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I I. INTRODUCTION

I
Predicting the behavior of combustion waves in mixtures of gas and reactive solid

particles is an important and partially unsolved problem. Practical applications include the

burning of damaged, granulated solid rocket propellants, detonation of granular explosives,

burning of coal dust, and explosion of dust-air mixtures. Understanding these combustion
processes could lead to more accurate design criteria for rockets, new tailored explosives,

and improved safety criteria for environments where dust explosions are a hazard.

One way to gain understanding is to model these processes. A class of models which

has the potential to describe these processes has been developed from two-phase continuum

mixture theory. These models describe each phase as a continuum; distinct equations for

the mass, momentum, and energy, and constitutive equations for both phases are written.

The two phases are coupled through terms representing the transfer of mass, momentum,

and energy from one phase to another. Models of these phase interaction processes are3 !determined from experiments. In the models the phhse interaction terms are constructed

such that global conservation of mass, momentum, and energy is maintained. Regardless

of the particular form of the two-phase equations, the idea of global conservation is a

criterion which must be enforced.

Unsteady two-phase models have been widely used to study the problem of

deflagration-to-detonation transition (DDT) in granulated solid propellants [1-21], which
has been observed experimentally [22-24]. Similar unsteady models are used to study3 transient combustion in porous media [25-30]. By concentrating on unsteady solutions,

many simple results available from the less-complicated two-phase steady theory have been3 overlooked. These results are found by solving the ordinary differential equations which

define the steady two-phase detonation equilibrium end states and reaction zone structure.3 None of the previous steady two-phase studies [31-39] has adequately described the

admissible end states and structure of a two-phase detonation. Only when steady

detonation solutions are understood will it be possible to fully comprehend the implications

of unsteady two-phase detonation theory.
A sketch of an envisioned two-phase steady detonation structure is shown in Figure3 1.1. In this study the term "structure" refers to the spatial details of the detonation wave.

Such details include the reaction zone length and the variation of pressure, temperature, etc.

* within the reaction zone.

I
I
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I Shock
velocity = D

I
Complte Reaction Zone Statinary

eReaction Cold Gas-
Particle
Mixture

Figure 1.1 Hypothesized Two-Phase Steady Detonation

Drawing on the results of one-phase detonation theory, it is hypothesized that a two-phase3 detonation consists of a chemica'l reaction induced by a shock wave propagating into a
mixture of reactive particles and inert gas. At the end of the reaction zone the particles are3 completely consumed; only inert gas remains. Important questions concerning such a

detonation exist, for example,3 1) What is the speed of propagation of an unsupported two-phase

detonation?

U 2) What are the potential two-phase detonation end states?

3) What is the structure of the two-phase reaction zone?

1 4) What is the nature of a shock wave in a two-phase material?

5) How is two-phase detonation theory related to and different from one-
phase detonation theory?

It is the goal of this work to use steady state analysis to answer these and other questions.
The steady equations are best studied using standard phase space techniques. In this

work such techniques are used to study a general two-phasc detonation model. In so
doing, two-phase steady detonations have been studied in the same context as the extensive

one-phase steady theory [40].
SAn outline of the two-phase detonation analysis of this work is now given. The

unsteady model is first presented. Then the steady dimensionless form of this model isI
U
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shown, and a description is given of how the problem of determining two-phase detonation
structure can be reduced to solving four coupled ordinary differential equations. In certain

limits, two of these equations may be integrated, and the detonation structure problem is

reduced to solving two ordinary differential equations in two unknowns. In these limits the

detonation structure has a clear geometrical interpretation in the two-dimensional phase
plane. Both two and four equation models are then used to predict examples of acceptable3 reaction zone structure and unacceptable, non-physical solutions. Parametric conditions are

obtained for the existence of a steady, one-dimensional, two-phase detonation.3 Two methods are used to restrict the available solutions: algebraic end state analysis

and reaction zone structure analysis. Algebraic analysis of the equilibrium end states,

described in detail in Ref. 41, identifies a minimum wave speed necessary for a steady

solution. This wave speed is analogous to the well-known one-phase Chapman-Jouguet

(CJ) wave speed. As in one-phase theory, the two-phase CJ wave speed is identified as
the unique wave speed of an unsupported two-phase detonation. The available solutions

are further restricted by considering the structure of the two-phase detonation wave. In
particular, results from the structural analysis show that below a critical initial solid volume

fraction, no steady two-phase detonation exists.

The behavior of integral curves near singular points identified by this analysis is

crucial in understanding why structural analysis limits the class of available detonation

solutions. Analysis of two-phase equations near singularities has not been emphasized in

two-phase detonation theory or two-phase theory in general. This is argued by Bilicki, et
al. [42] who write in a recent article concerning steady two-phase flow,

.. .the theory of singular points of systems of coupled, ordinary nonlinear
differential equations--still largely unexploited in this field--is essential for clarity,
for the proper management of computer codes and for the understanding of the
phenomenon of choking as predicted by the adopted mathematical model, an
impossible task when only numerical procedures are used.

The kingpin of the analysis is the identification of the singular points of the
basic system of equations and of the solution patterns that they imply. Such an
analysis serves two purposes. First, it gives the analyst the ability to understand
the physical characteristics of a class of flows without the need to produce
complete solutions. Secondly, it gives valuable indications as to how to
supplement computer codes because practically all numerical methods of solution
become inadequate in the neighborhood of the singular points and are
constitutionally incapable of locating them in the first place, which leads to
numerical difficulties and incorrect interpretations. This has to do with the fact
that the set of algebraic equations, which the computer code must solve at each
step, becomes either impossible or indeterminate.. .and no longer solves the
coupled differential equations of the model.

I
I
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The analysis presented here identifies two types of singular points, explained in detail
below, which exist in most two-phase particle burning models based on continuum mixture
theory. Near a singularity there is a zero in the denominator of the forcing functions of the
governing differential equations. The consequences of these singularities are not
straightforward and must be analyzed in detail.

One type of singularity occurs at the point of complete reaction. The complete reaction
singularity arises in most particle-burning two-phase detonation models because the
interphase transport terms used in the mass, momentum, and energy equations typically3 have a 1/r dependence where r is particle radius. When the particle radius approaches zero,
a singularity exists. It is an open question as to whether this singularity gives rise to3 infinite gradients, infinite property values, or whether there is a balancing zero in the
numerator to counteract the singularity. No work in the current two-phase detonation
literature adequately addresses this issue. The results presented in this work account for
the complete reaction singularity.

Another type of singularity occurs when the velocity of either phase relative to the
wave front is locally sonic. In this work the term "sonic" is taken to mean that the velocity
of an individual phase relative to the steady wave is equal to the local sound speed of that
particular phase as predicted by the state equation for that particular phase. The term
"sonic" in this work does not in any way refer to a mixture sound speed, nor is the idea of3 a mixture sound speed incorporated into any of the arguments developed in this work.

The sonic singularity arises naturally from the differential equations and has been
extensively studied for one-phase systems. Here for the first time the importance of sonic

conditions in two-phase detonation theory is shown: in general if a solid sonic condition is
reached within the detonation structure, a physically acceptable steady two-phase3 detonation cannot exist. If a solid sonic condition is reached, it is predicted that all physical
variables are double-valued functions of position; for instance at any point in the wave
structure two distinct gas densities, solid temperatures, etc. are predicted. This condition is
obviously not physical. Furthermore, when such a condition is reached the solution does3 not reach an equilibrium point; thus, no steady solution is predicted. This alone is a
sufficient reason to reject solutions contain a solid sonic condition. In addition to the solid
phase sonic singularity, imaginary gas phase properties are predicted if the solution

I includes a gas phase sonic point at a point of incomplete reaction.

The influence of the two-phase shock state on steady detonation structure is shown in3 this work. The shock wave, assumed to be inert, leaves the material in a state of higher
pressure, temperature, and density than the ambient state. This serves to initiate chemical3 reaction which in turn releases energy to drive the shock wave. In this work mechanisms

I
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which define the structure of a shock wave such as diffusive heat conduction and
momentum transport are ignored. It is assumed that the length scales on which these

processes are important are small in comparison with the reaction zone length scales. By
ignoring ti': diffusive processes, the model equations become hyperbolic, and

discontih.,.us shocks are admitted by the governing equations.
i ne shock state can be determined by an algebraic analysis. Any state admitted by the

shock discontinuity equations can serve as an initial condition for the ordinary differential
equations which define the reaction zone structure. It is shown that four classes of initial
conditions are admitted for a given wave speed: 1) gas and solid at ambient conditions, 2)
a shocked gas and shocked solid, 3) an unshocked gas and shocked solid, and 4) a
shocked gas and unshocked solid. Any of these initial states has the potential to initiate a

steady two-phase detonation. Examples are found of the first and fourth classes of two-
phase detonation in this thesis. Previous work in two-phase detonation has not adequately

I shown whether the gas and solid are shocked or unshocked.

In addition to two-phase detonation structure, this study contains a discussion of inert3 compaction waves in granular materials. This discussion, including a review of
compaction wave theory and experiments, is contained in Chapter 4 and is not germane to3 the subject of steady two-phase detonations. The results are predicted by the same
equations used to predict two-phase detonations in the limit of no chemical reaction and a
negligible gas phase. In Chapter 4 analysis is presented to describe the wave motion which

results when a constant velocity piston strikes a granular material.
A sketch of an envisioned compaction wave is shown in Figure 1.2.I

Compaction Wave Speed = D

I Piston Velocity =(UP

I Compacted

Region

Compaction
Zone

Figure 1.2 Sketch of Compaction Wave in Granular MaterialI
I
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A compaction wave is thought to be an important event in the process in the transition
from deflagration to detonation (DDT). It is thought that a compaction process in which the

granular material rearranges can give rise to local hot spots which could induce a detonation

3 in the reactive material.

Much as for two-phase steady detonation analysis, the compaction wave analysis
identifies equilibrium end states and compaction zone structure. It is shown that the
problem of determining compaction zone structure can be reduced to solving one ordinary
differential equation for one unknown, solid volume fraction. The results show a
continuous dependence of compaction wave structure with supporting piston velocity;
depending on the piston velocity, two broad classes of compaction zone structure exist. At

low piston velocities the compaction wave travels at speeds less than the ambient solid
sound speed. Such waves are called subsonic compaction waves. The structure is
characterized by a smooth rise in pressure from the ambient to a higher pressure equal to
the static pore collapse stress level. Subsonic compaction waves have been observed in

experiment [43, 44] and predicted by Baer [45] and Powers, Stewart, and Krier [46].
Above a critical piston velocity the compaction wave travels at speeds greater than the
ambient solid sound speed. A discontinuous shock wave leads a relaxation zone where the

pressure adjusts to its equilibrium static pore collapse value. Such waves are called

supersonic compaction waves. Supersonic compaction waves with leading shocks have

not yet been observed nor predicted in previous studies.
The plan of this thesis is to first review the relevant literature in Chapter 2. The

unsteady model is presented in Chapter 3. Steady inert compaction waves predicted by this
model are discussed in Chapter 4 which is followed by a discussion of two-phase3 detonation equilibrium end states and structure in Chapter 5. Conclusions and
recommendations are given in Chapter 6. Appendix A discusses the method of

characteristics, and lists the characteristic directions and equations for one-dimensional,

unsteady, two-phase reactive flow. Appendix B has a detailed discussion of state relations

and demonstrates that the thermal and caloric state equations used in this study are

compatible. Appendix C compares the momentum and energy equations of this study to
other common forms of these equations and defends the choices made for this study. Two-3 phase CJ deflagration conditions are considered in Appendix D. Appendix E contains a

detailed description of how to reduce the model to the simple two-equation model presented3 in Chapter 5. Appendix F gives a derivation of the number conservation equation. This

equation holds that in the two-phase flow field, the number density of particles does not

3 change.

I
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II. REVIEW OF TWO-PHASE DETONATION THEORYI
This chapter will briefly describe the literature which is relevant to the field of two-

phase steady detonation theory. This includes works on the fundamentals of two-phase

continuum mixture theory, basic one-phase detonation theory, and applications of these
theories to combustion in porous media. As this thesis is primarily concerned with the
details of modeling two-phase detonations using existing models and not with the3 experiments which provide the basis for these models, the experimental literature regarding
two-phase detonations will not be reviewed. The interested reader is referred to Butler's
thesis [47] for a thorough description. A review of compaction wave theory is found in

Chapter 4.
The theory of two-phase flow is still under development, and there are many issues

which remain unresolved. Drew [48] considers some of these issues in a recent review
article. However, one need only look at the wide disparity in the forms of two-phase
model equations expressed by various researchers to realize that the particular form of the

equations is a matter of dispute. Thus in constructing a model, one looks for the most3basic principles to use as a guide. In his description of two-phase theory from a continuum
mechanics perspective, Truesdell [49] describes three metaphysical principles which can be

used as a guide. They are:

1. All properties of the mixture must be mathematical consequences of
properties of the constituents.

2. So as to describe the motion of a constituent, we may in imagination
isolate it from the rest of the mixture, provided we allow properly for
the actions of the other constituents upon it.

3. The motion of the mixture is governed by the same equations as is a3 single body.

Two-phase theory as applied to combustion in granular materials has been developed
primarily through the work of Krier and co-workers [1, 7, 16, 17, 18, 20, 21], Kuo,

Summerfield, an - co-workers [29, 30, 37, 38], and more recently by Nunziato, Baer, and

co-workers [2, 3, 4, 11, 13]. In addition, Nigmatulin's book [501, available in Russian
- Id not reviewed by this author, is widely referred to in the Russian literature as a source

for the governing equations of two-phase reactive flow. As opposed to the work of Kuo,
et al., who consider only deflagrations, the work of Krier, et al., and Nunziato, et al., has3 been applied to the detonation of granular propellants and explosives. The extreme

I
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conditions of a detonation (gas pressures are of the order of 10 GPa) force the adoption of
a fully compressible solid phase state equation and a non-ideal gas phase state equation.
These models use constitutive theory specially developed to describe the pore collapse
which can be associated with detonations in these materials. There are only minor

differences in the Krier and Nunziato model formulations; these are considered in detail in
Chapter 3 and Appendix C.

To understand two-phase detonation theory, it is necessary to be familiar with some of
the results of one-phase detonation theory. The best summary of these results is given in
Fickett and Davis's book [40]. The one-phase concept most relevant to two-phase theory
is that of a steady Zeldovich, von Neumann, Doering (ZND) detonation which terminates at3 a CJ point. The ZND theory is named for its developers who independently described the
theory in the 1940's. The CJ analysis describes the equilibrium end states for a one-phase

detonation, and the ZND analysis describes the structure of the detonation reaction zone.

Much of one-phase detonation theroy can be understood by considering the
equilibrium end states. The CJ point is an equilibrium end state at which the gas velocity is3 sonic with respect to the wave front. Since this point is sonic, the theory predicts that any
trailing rarefaction wave is unable to catch and disturb the steady wave. There is only one

detonation wave speed which leaves the material in a CJ state. The equilibrium end state
analysis of one-dimensional theory hypothesizes that this wave speed is the unique speed
of propagation for an unsupported detonation wave. There are no equilibrium end states

for wave speeds less than the CJ wave speed. For wave speeds greater than the CJ wave

speed, two equilibrium states are predicted. They are classified on the basis of the
equilbrium end state pressure: the solution which terminates at the higher pressure is called
a strong solution, the other solution is called the weak solution. The strong end state is a3 subsonic state, and thus the strong detonation is susceptable to degradation from trailing
rarefactions. To achieve a strong detonation, the theory predicts a supporting piston is3 necessary so that no rarefactions will exist. The weak end state is a supersonic state and
thus does not require any piston support and is not ruled out by simple equilibrium end

state analysis.

ZND theory considers the structure of a detonation wave which links the initial state to
the equilibrium end state. A ZND detonation is described by an inert shock wave
propagating into a reactive material. The shock wave leaves the material in a locally

subsonic, high temperature state. The high temperature initiates an exothermic chemical
Sreaction. Energy released by this chemical reaction is predicted to drive the detonation

wave. For wave speeds greater than the CJ speed, the solution terminates at the strong3 point, a subsonic state which requires piston support to remain steady. For a CJ wave

I
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speed the solution terminates at a sonic point and thus is able to propagate without piston

support. The simple ZND theroy predicts that there is no path from the initial shock state to

the weak solution point and thus rules out a weak detonation with a leading shock in the

structure. Thus simple ZND theory predicts that the wave speed for an unsupported

detonation is the CJ wave speed. There is, however, evidence, described in detail by

Fickett and Davis, that weak solutions can be achieved. In general the weak detonations

described by Fickett and Davis require special conditions to exist.

Fickett and Davis describe how ZND theory can be placed in the context of the general

theory of systems of ordinary differential equations. Details of this theory can be found in

standard texts [51, 52]. The theory describes how, given a set of ordinary differential

equations, solutions link an initial state to an equilbrium end state and how other solutions

do not have equilibrium states. Equilibrium states are defined at points where the forcing

functions for each differential equation are simultaneously zero. Whether or not an

equilibrium state is reached depends on the particular form of the differential equations. A

solution which does not reach an equilibrium point is rejected as a steady solution by

m definition.
A shortcoming of most two-phase detonation studies is that little emphasis has been

put on placing two-phase detonation theory in the context of one-phase detonation theory

and the more general ordinary differential equation theory. Most work in two-phase

detonation theory has concentrated solely on using numerical solution of the unsteady

equations to predict the two-phase equivalent of a CJ detonation [1, 2]. A primary goal of
these works has been to predict the deflagration-to-detonation transition (DDT) zone length

rather than the character of the detonation itself. As such, there has been little discussion of
the basic characteristics of a steady two-phase detonation. In these studies the definition of3 the two-phase CJ state is unclear. Reference is often made to the one-phase CJ results with

the assumption that the one-phase aJ condition naturally must also apply to the two-phase

detonation model. Also in these works no attempt has been made to describe conditions

under which a two-phase strong or weak detonation can exist. Since these states can be
predicted by one-phase theory, it is reasonable to suggest that two-phase equivalents may

also exist. Detailed descriptions of the steady two-phase reaction zone structure have been

generally ignored.

Studies of steady two-phase systems will now be considered. Several works exist
which consider the relatively low-speed, low-pressure deflagration of solid particles.

Among these are the works of Kuo, et al. [37, 38], Ermolaev, et al. [35, 36], and Drew

[3 11. These works consider the particle phase to be incompressible and naturally have no

m discussion of shock waves. The work of Krier and Mozafarrian [341 considered a reactive

I
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wave with a leading shock wave in the gas phase. Detonation structure was determined by
numerically solving the steady two-phase ordinary differential equations. This work is of
limited value because of the assumption of an incompressible solid phase. This assumption

is unrealistic in the detonation regime. In addition they did not establish whether the model

equations of their work are hyperbolic, leading one to question whether their model

equations are well-posed for their initial value problem.
The most important studies of steady two-phase detonation are those of Sharon and

Bankoff [33] and Condiff [32]. These works apply two-phase detonation theory to vapor
explosions which can arise from the rapid mixing of a hot liquid and cold vaporizable
liquid. Large differences in the features of the problem of vapor explosion and that of

* detonation of solid granular explosive prevent an extension of results of vapor explosion to

detonations in granular explosives from being made. Among the differences are that in a
vapor explosion both components come to an equilibrium where both components exist in

finite quantities, while in a detonation of a solid propellant the solid is entirely consumed.
There are also large differences in the functional form of the constitutive equations.

I Nevertheless, both these works discuss in detail many features of two-phase detonation
theory which are held in common between vapor explosions and detonations in granular
explosives. More importantly, these works outline a rational approach to the problem of
two-phase detonation.

Both Sharon and Bankoff and Condiff describe a two-phase detonation in the context

of one-phase steady detonation theory. That is they describe the detonation structure as a

shock jump followed by a relaxation zone whose structure is determined by solving a set of

ordinary differential equations. Both works describe the effective two-phase CJ state.
Sharon and Bankoff argue that the CJ vapor explosion is the only steady solution which
can exist. They also provide details of the detonation structure. Condiff argues that there
is a larger range of solutions to choose from and that a phase plane analysis is necessary to
choose which solutions can be accepted.

An issue which has long been troublesome for two-phase theory is that of whether the

equations are well-posed. In two-phase detonation theory, only two models have been

proposed which have been shown to be well-posed for initial value problems: the model of
Baer and Nunziato [2] and Powers, Stewart, and Krier [41]. The feature of these models3which guarantees that they are well-posed is an explicit time-dependent equation which

models the change in volume fraction in a granular material. When models without such an3 equation are examined, it is found that there are regimes in which imaginary characteristics

are present [8, 28, 48, 531. Such models are not in general well-posed for initial valueI
I
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problems; because of this any solution to an initial value problem for such a model can be

shown to be unstable to disturbances of any frequency.

It should be said that for gas phase systems that the ZND assumption of one-

dimensionality has been shown by experiments to be invalid in general. However the ZND

predictions are able to roughly predict spatially averaged gas phase properties such as final

pressure and wave speed. For solids, experimental results provide little evidence regarding

the existence of multidimensional detonation structure. Regardless of whether or not

detonations in solids are one or multidimensional, it is reasonable to consider the results of

one-dimensional theory before proceeding to consider more complicated multidimensional

theories.

Finally an issue relevant to models of particle burning must be considered, that of how

an expression for the evolution of particle radius should be formulated. In two-phase

models of granular materials the particle radius is a required variable for all interphase

transfer terms (reaction, drag, and heat transfer are known empirically as functions of

particle radius). In much of the two-phase granular explosive literature there is confusion
I as to how to determine the particle radius. The recent work of Baer and Nunziato [2]

disregards the issue by not giving an expression for particle radius evolution. It would

seem that this model is incomplete. The work of Krier and co-workers provides a relation

for the particle radius evolution whose physical interpretation is unclear (see Appendix F).

A rational way for determining particle radius is found by considering an evolution

equation for the number density of particles. Several modelers do write explicit equations

for number density evolution [10, 14, 26, 31, 39]. Generally these studies assume that the

number density of particles is conserved. It can be shown that with such an equation it is

possible to determine a clearly understood equation for the evolution of particle radius (see

* Appendix F).

I
I

I
1
I

II I
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I1. THE UNSTEADY TWO-PHASE MODELI

A two-phase model is presented which is a slight modification of the model firstU presented in Ref. 41. It is similar to models used by Butler and Krier [1] and Baer and
Nunziato [2]. Changes of two types have been made. First a simplified constitutive theory
has been adopted in order to make the equations tractable. The trends predicted by the

simpler constitutive equations are similar to the trends of Refs. 1 and 2. A second more3 substantial change is that an explicit expression for particle radius evolution has been

adopted. No counterpart to this equation is found in either Ref. 1 or 2. For the proposed3 model it is assumed that each phase is a continuum; consequently, partial differential
equations resembling one-phase equations are written to describe the evolution of mass,
momentum, and energy in each constituent. In addition, each phase is described by a

thermal state relation and a corresponding caloric state relation. Constituent one is assumed
to be a gas, constituent two, a solid.

In order to close the system, a dynamic compaction equation similar to that of Ref. 2 is
adopted. Choosing a dynamic compaction equation insures that the characteristics are real;

i thus, the initial value problem is well-posed. The unsteady two-phase model is posed in
characteristic form in Appendix A. The dynamic compaction equation states that the solid
volume fraction changes in response to 1) a difference between the solid pressure and the

sum of the gas pressure and intragranular stress and 2) combustion. Most models use
empirical data to model the intragranular stress. Here for simplicity it is assumed that the
intragranular stress is a linear function of the solid volume fraction. This function is
constructed such that no volume fraction change due to pressure differences is predicted in3 the initial state. It is emphasized that the choices made for the closure problem and for

other constitutive relations place a premium on simplicity so that explicit analytic3 calculations can be made whenever possible. At the same time the model adopted here is
representative of a wider class of two-phase detonation models currently in use.

i The unsteady equations are

5' [P 1 m1 +i[p 1  u1 ] = (2r)poaP1 (3.1)

I "[P 2 2 ]+. .[P,0 2u2] =-(2r) P202alm (3.2)

ItF
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I1+ I = U() 2 2 Pi ±2±u 1 -u2) (3.3)

+ + = -U U 2 PP 1 4 lu (3.4)

I~ ~ ~ ~ a 4p(iu/) + p 1 1 :u/2P /

1( u2 2 a u(3 u2/2Pmp

+u2 ijpa fr'2.(J1-2) - hC4g T~ (3.5)

4 ( e 2  + u 2 / 2 ) ] + 0! [ p m u 2  / 2 + P 2 p ) r

e +u /2 0m2 1 , + 2i~a(u1 -u2 ) +h.~.T-T) (3.6)

202 mr /

.[r3]+ fu 2 i]=0 (3.7)
S l 12 p10 a. 202 +U/+

Io 242 1 2  2 l rJ

+u2a AC 2 1 020 j2 0 ~2 (3.8)

IP, pRT(I+bp1 ) (3.9)

2e R 1  (3.10)

- p 1 (1 +bp)I

2r

ci RT, [I +2bpI + (R/cv 1)(1 + bp 1)2] (3.11)

P= (7 2  i) 2 p 2T 2- fai(3.12)

^2

i 2 p 2 0 +q (3.13)

P1 (3. 
O)

II=
I v
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2
C2 

= )'2 (7'2 " I) Cv2T 2  (3.14)

I + 02 = 1 (3.15)I
Here the subscript "0" denotes the undisturbed condition, "1" denotes the gas phase;

"2," solid phase; p, density; 0, volume fraction; u, velocity; r, solid particle radius; P,
pressure; m, burn index; a, burn constant; 03, drag parameter, e, internal energy; h, heat

transfer coefficient; R, gas constant; b, co-volume correction; c, sound speed; cv, constant

volume specific heat; s, non-ideal solid parameter; gt, compaction viscosity; y'2' Tait
parameter, and q, heat of reaction.

Numerical values for the parameters introduced above, representative of the solid high
explosive HMX, are listed in Table I. When available, references are listed for each of the

i parameters. The unreferenced parameters have been estimated for this study. The initial
gas density and temperature have arbitrarily been chosen to be 10 kg/m3 and 300 K,3 respectively. Drag and heat transfer parameters have been chosen to roughly match

empirical formulae given in Ref. 13. The gas constant R and virial coefficient b have been
chosen such that predictions of CJ detonation states match the CJ detonation states

predicted by the thermochemistry code TIGER [54] as reported in Ref. 1. The solid
parameters s and y2 have been chosen such that solid shock and compaction wave
predictions match experimental shock [55] and compaction wave data [43, 44]. As

reported by Baer and Nunziato [2], there are no good estimates for the compaction
I viscosity g. Ref. 2 chooses a value for compaction viscosity of 103 kg/m s. To

demonstrate the existence of a two-phase detonation, it was necessary in this study to
choose a higher value, 106 kg/m s, for the compaction viscosity.

Undisturbed conditions are specified as

P1 = P10 ' 2 =  2 ' ' 20 = 0

i u2 = 0, r = r0  , T1 =T o  , T2 =T o

I Undisturbed conditions for other variables can be determined by using the algebraic

relations (3.9-15).

Equations (3.1,2) describe the evolution of each phase's mass; Equations (3.3,4),
momentum evolution; and Equations (3.5,6), energy evolution. Homogeneous mixtureI

I
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3 DIMENSIONAL INPUT PARAMETERS

a [I] [m/(s Pa)] 2.90 x 10-9

Pio [kg /M 3 ] 1.00 x 10 1

m I1.00 x 100
p [kg /(s m2)] 1.00 x 104

P20 [1,2] [kg/ m 3] 1.90 x 103

3 h [I/(s K m8 /3)] 1.00 X 107

CVI [2] [J / (kg K)] 2.40 x 103

cv2  [1, 2] [J / (kg K)] 1.50 x 103

R [J / (kg K)] 8.50 x 102
s [(m/s) 2] 8.98 x 106

q [1] [J / kg] 5.84 x 106

ro  [1, 2] [im] 1.00 x 10-4

5 b [m3 /kg] 1.10 x 10-3

Y2 5.00 x 100

C  [kg/ (m s)] 1.00 x 106

TO  [K] 3.00 x 102

I
I
I

I

I

I
I

U i
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equations are formed by adding Equations (3.1) and (3.2), (3.3) and (3.4), and (3.5) and
I(3.6). Thus for the mixture, conservation of mass, momentum, and energy is maintained.

The forcing functions, inhomogeneities in Equations (3.1-6), model inter-phase

momentlun, energy, and mass transfer. Functional forms of inter-phase transfer terms

have been chosen to have a simple form. Figure 3.1 shows a comparison of the above
drag model and the empirical model used by Baer [13], which is dependent on Reynolds
number for particle radii from 0 to 300 gtm. The Reynolds number has been found to lie in

the range 0-1000 within the two-phase detonation reaction zones of this study. Figure 3.13 shows that the functional forms of the two relations are similar, though the magnitudes
vary widely. A similar comparison is made in Figure 3.2 between the simplified inter-
phase heat transfer modelled here and the empirical heat transfer model used by Baer.

Again, the functional form of the two models is similar and wide variation exists in the

magnitudes. For mass transfer a well-known empirical relation for the regression of
particle radius is used. It is observed that the rate of change of particle radius is
proportional to the surrounding pressure raised to some power. The right sides of the mass3 equations (3.1-2) are formulated to incorporate this feature.

By combining the solid mass evolution equation (3.2) with the number conservation3 equation (3.7), an explicit equation is obtained for particle radius evolution:

ar mP2 + u 2x (3.16)
N + u2Tx I 3p\2 at 2axj

This equation demonstrates that following a particle, the particle radius may change in
response to combustion, embodied in the empirically-based term -aPlm, and density

changes, as described by the density derivative terms. Many two-phase particle-burning

I detonation models do not explicitly include an equation for the evolution of particle radius.
In these models, which also do not explicitly enforce number conservation, it is unclear3 what physical principles are used to determine the particle radius. For a detailed derivation

of the number conservation relation (3.7) and Equation (3.16) see Appendix F.

Other constitutive relations are given in Equations (3.8-15). The dynamic compaction

equation is expressed in Equation (3.8). Constituent one is a gas described by a virial
equation of state (3.9). Constituent two is a solid described by a Tait equation of state [69]1 (3.12). Assumption of a constant specific heat at constant volume for each phase allows

caloric equations (3.10,13) and sound speed equations (3.11,14) consistent with theI
I
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assumptions of classical thermodynamics to be written for each phase. Appendix B shows3 how thermodynamically consistent equations are derived and how relevant thermodynamic

properties are determined for the state equations chosen here. The variable 0 is defined as a
volume fraction, 4 a constituent volume/total volume. Equation (3.15) states that all the

volume is occupied by constituent one or two; no voids are permitted.

By writing Equations (3.1-15) in characteristic form, it is easy to show that the model
is hyperbolic and the characteristic wave speeds are ul , u2, ut ± cl, and u2 ± c2 (see

Appendix A). Baer has reached a similar conclusion. The fact that the characteristic wave3 speeds are real is a consequence of the assumed form of the compaction equation. Other

closure techniques will, in general, result in a model with imaginary characteristics which is

* not well-posed for initial value problems.

The momentum and energy equations of this model are slightly different from those of

Baer and Nunziato's model. The momentum equations of this work, which are of the same

general form of those of Ref. 1, differ with those of Ref. 2 by a term Plia)l/ax. Also the

energy equation of Ref. 2 includes a term called "compaction work," proportional to the
volume fraction gradient which is not included in this model. Which form is correct is still

controversial; a defense of the model presented here is described in detail in Appendix C.3 IThe methodology which is used here to determine detonation structure is unaffected by the
particular choice of model form.U

I
I
I
3
I

I
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IV. STEADY STATE COMPACTION WAVE ANALYSIS

I
This chapter is concerned with steady compaction waves in granular materials. These

waves are inert and thus fundamentally different from detonation waves. Before turning to
the study of detonation waves in Chapter 5, there is a good reason to first consider
compaction waves. That is, the simplicity of the two-phase equations allows a well-
understood solution to be determined. The properties of this solution and the solution3 procedure itself are useful in the detonation analysis.

A compaction wave can arise from the impact of a piston on a granular material. It is
shown here that the two-phase equations are able to describe such waves when no reaction

is allowed and gas density is small relative to the solid. This chapter has a self-contained,
complete discussion of compaction waves, essentially independent of the detonation
analysis, except that the same model equations are used in different limits. A slightly
different notation is introduced for this chapter which reflects the simpler nature of the
compaction wave problem relative to the detonation wave problem.

It has been established by experiments with granular high energy solid propellants [23,
241 and by numerical solution of unsteady two-phase reactive flow models [1, 2] that

deflagration to detonation transition (DDT) in a confined column of such granular energetic
material involves material compaction and heat release. In many cases the origin of such aUI
DDT can be traced to the influence of a compaction wave, defined as a propagating
compressive disturbance of the solid volume fraction of the granular material. Steady
compaction waves in porous HMX (cyclic nitramine) were observed by Sandusky and
Liddiard [43] and Sandusky and Bernecker [44] arising from the impact of a constant5 velocity piston (piston velocity < 300 m/s). Compaction waves in these experiments travel
at speeds less than 800 m/s, well below the ambient solid sound speed, which is near 30003 rm/s. To understand compaction waves it is necessary to explain why this unusual result is
obtained.

The first step in modeling compaction waves is to study steady compaction waves.

With understanding gained from steady compaction waves, it is easier to understand the
time-dependent development of these waves and how such a wave can evolve into a
detonation wave. Although it is possible to numerically solve the coupled unsteady partial
differential equations which model such dynamic compaction processes (including the

Sformation of shock waves) [56], it is difficult to interpret from such models what physical
properties dictate the speed, pressure changes, and porosity changes of compaction waves.3 It is the goal of this chapter to provide a simple method to predict these parameters as a

I
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function of material properties with a representative model.3 The experiments of Sandusky and Liddiard are simulated by studying steady solutions

of two-phase flow model equations. Without considering wave structure, Kooker [571 has

used an algebraic end state analysis to predict compaction wave speed as a function of

piston velocity using full two-phase model equations. It is possible to extend this analysis
in the limit where the effect of one of the phases is dominant. This approach was first used
by Baer [45] in his study of steady compaction wave structure. Here a more detailed

discussion is provided of steady structure and basic parameter dependencies. Throughout3 this chapter, the assumptions and results will be compared to those of Baer.

The results show a continuous dependence of compaction wave structure on the piston
velocity supporting the wave; depending on the piston velocity, two broad classes of

compaction zone structures exist. At low piston velocities the compaction wave travels at

speeds less than the ambient sound speed of the solid. Such waves are called subsonic

compaction waves. The structure is characterized by a smooth rise in pressure from the
ambient to a higher pressure equal to the static pore collapse stress level. Subsonic3 compaction waves have been observed experimentally (though compaction zone widths
have not been measured) and predicted by Baer. Above a critical piston velocity the

compaction wave travels at speeds greater than the ambient sound speed in the solid. A

discontinuous shock wave leads a relaxation zone where the pressure adjusts to its

equilibrium static pore collapse value. Such waves are called supersonic compaction

waves. Supersonic compaction waves with leading shocks have not as yet been observed

nor predicted.

A shock wave in compaction wave structure is admitted because the model equations
are hyperbolic. This model ignores the effects of diffusive momentum and energy3 transport. If included, these effects would define the width of the shock structure. Here it

is assumed that the length scales on which these processes are important are much smaller3 than the relaxation scales which define compaction zone structure.

Compaction wave phenomena predicted here have analogies in gas dynamics. As

described by Becker and Bohme [581, gas dynamic models which include thermodynamic

relaxation effects predict a dispersed wave to result from the motion of a piston into a

cylinder of gas. Steady solutions with and without discontinuous jumps are identified.

These solutions have features which are similar to those predicted by the compaction wave
model.3 Here comments are made on the differences and similarities of the original Baer study

and the present study. Baer's incompressibility assumption has been relaxed to allow a

fully compressible solid. A complete characterization of compaction wave structure as a

I
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function of piston wave speed including an analysis of the supersonic case is given here.
With this analysis many new results are obtained. A unique equilibrium condition,

determined algebraically, is obtained. As Baer does, it is demonstrated that the problem of
determining compaction wave structure can be reduced to solving one ordinary differential
equation for volume fraction. Other thermodynamic quantities (pressure, density, etc.) are
algebraic functions of volume fraction. An analytic solution in the strong shock limit is
given. A term used by Baer called "compaction work" is not included in this model. As

shown in Appendix C, this term violates the principle of energy conservation.

I Unsteady Model

I The two-phase continuum mixture equations (3.1-15) are repeated in a condensed
form in Equations (4.1-7). The model describes two-phase flow with inter-phase mass,
momentum, and energy transport. A density, pi; pressure, Pi; energy, ei; temperature, Ti;
velocity, uj; and volume fraction, 4i, is defined for each phase (for the gas i = 1, for the

solid i = 2). A compaction equation similar to that of Baer and Nunziato is utilized. The
compaction equation models the time-dependent pore collapse of a porous matrix and is
based on the dynamic pore collapse theory of Carroll and Holt [591.

The unsteady two-phase equations are

ii+ ui)ii = Ai  (4.1)

1Npioiu + i (pii + iiu ) B. (4.2)

u + pu = Ci  (4.3)
I ~ ~~~o i i 1) j ae iii

4  2  -a P 1 f(2)) (4.4)

I9C
P. =Pi(pi, Ti) (4.5)

e. =ei(P i, p.) (4.6)

+0 = 1 (4.7)

I
I
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U Equations (4.1), (4.2), and (4.3) describe the evolution of mass, momentum, and energy,

respectively, of each phase. Inter-phase transport is represented in these equations by the

terms Ai, Bi, and Ci, which are assumed to be algebraic functions of Pi, ui, pi, etc. These

terms are specified such that the following conditions hold:

2 2, 2

1Ai=0= XB =0, C1 = 0 (4.8)

* This insures that the mixture equations obtained by adding the constituent mass,

momentum, and energy equations are conservative.

For each phase an initial temperature, density, velocity, and volume fraction is

defined. The subscript 0 is taken to represent an initial condition.U
T i = Ti0 I Pi = Pi0 I ui0 0 , 2 = 020 (4.9)

Other variables are determined by the algebraic relations (4.5), (4.6), and (4.7).

Equation (4.4) is the compaction equation. A similar model equation has been used by

Butcher, Carroll, and Holt [60] to describe time-dependent (dynamic) pore collapse in3 porous aluminum. The parameter JIx is defined as compaction viscosity, not to be confused

with the viscosity associated with momentum diffusion. The compaction viscosity defines

the only length scale in this problem. The existence of such a parameter is still a modeling

assumption and its value has not been determined. There is, however, a strong theoretical

justification for the dynamic pore collapse model. It has been shown (Appendix A) that

when dynamic compaction is incorporated into two-phase model equations, the equations

are hyperbolic. The initial value problem is required to be hyperbolic in order to insure a

* stable solution.
In the compaction equation (4.4) f represents the intra-granular stress in the porous3 medium. It is assumed to be a function of the volume fraction. Baer has estimated f from

Elban and Chiarito's [61] empirical quasi-static data obtained by measuring the static

pressure necessary to compact a porous media to a given volume fraction. Carroll and Holt

have suggested an analytical form for f for three regimes of pore collapse, an elastic phase,

an elastic-plastic phase, and a plastic phase. In this chapter f will be modelled with an

I equation similar to Carroll and Holt's plastic phase equation. Here, two a priori

assumptions about f are made. First, it is assumed that f is a monotonically increasingII,
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function of volume fraction so that an increasing hydrostatic stress is necessary to balance

the increased intra-granular stress which arises due to an increasing solid volume fraction.

Second, it is assumed that at the initial state f must equal the difference of the solid and gas
pressures so that the system is initially in equilibrium. The results show that with these

assumptions, compaction wave phenomena are relatively insensitive to the particular

functional form of f.
Equations (4.5) and (4.6) are state relations for each phase. Equation (4.7) arises

from the definition of volume fraction. It states that all volurhe is occupied by either solid

3 or gas.

Dimensionless Steady Model

To study compaction waves in the context of this model, the following assumptions

are made: 1) a steady wave travelling at speed D exists, 2) gas phase equations may be
neglected, 3) inter-phase transport terms may be neglected, and 4) the solid phase is3 described by a Tait equation of state. As a result of Assumption 1, Equations (4.1) through
(4.4) may be transformed to ordinary differential equations under the Galilean
transformation 4 = x - Dt, v = u - D. By examining the dimensionless form of Equations

(4.1) through (4.7), it can be shown that in the limit as the ratio of initial gas density to
initial solid density goes to zero, that there is justification in neglecting gas phase equations

and inter-phase transport. To prove this contention, one can integrate the steady mixture
mass, momentum, and energy equations formed by adding the component equations to3 form algebraic mixture equations. By making these equations dimensionless (as done in
Chapter 5), it is seen that all gas phase quantities are multiplied by the density ratio

S0p0o/p20. As long as dimensionless gas phase properties are less than O(P20PIO), there is

justification in neglecting the effect of the gas phase.

Because the gas phase is neglected, the subscripts 1 and 2 are discarded. All variables

are understood to represent solid phase variables. The caloric Tait equation [69] for the
* solid is

i ~Pp Ps

e 0 (4.10)
(7-1) p

I Here y and s are parameters that define the Tait state equation. The value of y is chosen to

match shock Hugoniot data [55]. It is analogous to the specific heat ratio for an ideal

I
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equation of state. The parameter s is defined as the non-ideal solid parameter. In this study

s is viewed as an adjustable parameter which allows the equation of state to be varied in a

simple way in order to show how the results are sensitive to non-ideal state effects. When

s = 0, the state equation is an ideal state equation. For this study a value of s was chosen to

match the compaction wave data of Sandusky and Liddiard [43].
To determine the ambient solid sound speed, an important term in this analysis, it is

necessary to specify a thermal equation of state. By assuming a constant specific heat at
constant volume cv, a thermal equation of state consistent with Equation (4.10) can be

derived.

P = (7- 1)cvpT -p 0s/7 (4.11)

Based on Equations (4.10) and (4.11) an equation for the solid sound speed c is easily
derived by using the thermodynamic identity T dil = de - p/p2 dp, where i" is the entropy.

S2 = aP I c- 1)CvT (4.12)

To simplify the analysis, dimensionless variables are denoted by a star subscript and

are defined as follows

I *= P ,/PO v.= v/D, e= e/D 2 , T. = CvT/D 2 ,

P, = P/(p0D2) , = 4P 0 D/g c

I With this choice of dimensionless variables four dimensionless parameters arise.

y = Tait Solid Parameter, a = = Non-Ideal Solid Parameter

7(Y- l)cVT0 - s
|- xt = initial pressure , 0 = initial volume fraction3 D

I
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For materials of interest % and y are of order 1. Interesting limiting cases can be studied
when s-- 0, corresponding to either the strong shock or weak non-ideal effect limit, or

when ic -4 0, corresponding to the strong shock limit.

With the assumptions made, steady dimensionless equations can be written to describe
the compaction of an inert solid porous material as follows:

d(Po) = 0 (4.13)

Sp. 0 +P v.) = 0 (4.14)

d (Pov. e*+v./2+P*/P) = 0 (4.15)

do 0(1-0)(pf()) (4.16)

e,* (4.17)
('7- 1) p,

Initial conditions are specified as

p. = 1 , =0 v = -1, P =7t (4.18)

Equations (4.13-17) are equivalent to Baer's steady model except a term Baer calls
"compaction work" is not included and a simpler state equation is used. Equations (4.13),
(4.14), and (4.15) may be integrated subject to initial conditions (4.18) resulting in the
following set of equations:

do 0 (1- 0) (P f()) (4.19)

d4~ * V

I P, P v, = -00 (4.20)

U
I
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2 C ~(+) (4.21)

2(4.22)p,(ov, e,+v,/2+P,/p, -'"'1/2+n (4.22

+Y y

e, =- (4.23)
('f- 1) p.

I From Equations (4.20) through (4.23), equations for pressure and velocity as

functions of volume fraction can be written. Equation (4.23) is used to eliminate energy
from Equation (4.22). Velocity is eliminated from Equations (4.21) and (4.22) by using
Equation (4.20). Then density is eliminated from Equation (4.22) by using Equation

(4.21). What remains is a quadratic equation involving only pressure and volume fraction.

It is possible to solve this equation for pressure explicitly in terms of volume fraction. The

solution is

! 00
-- f 1) ., 2l 'I( ,y.l(% . l.7 ) 2 (+)-1_.t( t(-1

1 -1± 1+ ( { (4.24)

L _00

U The solution corresponding to the positive branch is the physically relevant one. The
negative branch is associated with negative pressure. Equations (4.20) and (4.21) may be

simultaneously solved for velocity as a function of pressure and volume fraction. The
velocity is given byI

P. 0l 0 1+ nt)
I* 0 -(4.25) 0

I
I
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By using Equation (4.24) to substitute for pressure in Equation (4.25), velocity is available

as a function of volume fraction alone. The mass equation (4.20) can be used to give

density as a function of volume fraction and then the state equation (4.17) can be used to

give energy as a function of volume fraction. Thus all variables in the compaction equation

(4.19) can be expressed as functions of volume fraction; the compaction wave problem is
reduced to solving one ordinary differential equation (4.19) for volume fraction subject to
the condition = 0 at * = 0.

Next the technique is described for determining wave speed as a function of piston
velocity. This calculation is algebraic and can be made without regards to structure. The
solution is parameterized by the wave velocity through the definitions of 7c and a. Instead

of using a piston velocity as an input condition, it is easier to consider the wave speed to be

known and from that wave speed calculate a piston velocity. By assuming a static pressure
equilibrium end state in Equation (4.19) (P.(O) = f*(O)), it is possible to determine the

I equilibrium volume fraction and thus, from Equations (4.24) and (4.25), the final velocity
v.. The piston velocity (up) is found by transforming the final velocity to the lab frame by

using the transformation up = D(v. + 1).

Pressure equilibrium end states are found when a volume fraction is found such that
the pressure given by Equation (4.24) matches the intra-granular stress predicted by f. In

the initial state, Equation (4.24) predicts a pressure of 7t, the dimensionless initial pressure.
By assumption f also yields a value of t in the initial state so that the undisturbed material

is stationary. In Figure 4.1, dimensional pressure in HMX is plotted as a function of
volume fraction from Equation (4.24) for a series of wave speeds and an initial volume
fraction of 0.73. Except for compaction viscosity PIt parameters used to model HMX are
those previously listed in Table I (cv, I t, and Po of Baer is used, and the parameters y and

s are estimated by requiring predictions to match shock and compaction data. Unlike in

detonation wave analysis, there is no special problem posed by using Baer's value of
compaction viscosity, 1000 kg/(m s), in these calculations). All curves pass through the

point of initial pressure and volume fraction.
The curve on Figure 4.1 for the ambient sonic wave speed (D = 3000 m/s) has a

special property whose importance will be apparent in the following discussion. For this
curve a volume fraction minimum exists at the initial volume value. It can be proven for a
sonic wave speed, that the discriminant in Equation (4.24) is identically zero for 0 = 0 and

D y(y - 1)c,TO (the ambient solid sonic wave speed).

The positive pressure branch of Equation (4.24) is a double-valued function of volume
fraction for wave velocities that exceed the ambient solid sound speed and single-valued forI

I
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wave velocities less than or equal to the ambient solid sound speed. For subsonic wave

speeds, small increases from the initial volume fraction cause small positive perturbations
in pressure. For supersonic wave speeds a positive increase of the initial volume fraction is

only acceptable if the pressure jumps discontinuously to a shocked value on the upper

portion of the double-valued P.-O curve. Because the governing equations are hyperbolic,

these shock jumps are admissible. From Equation (4.19) the shock jump condition for

volume fraction is

1 [ ]0 = 0 (4.26)0

where "0" denotes the initial state and "s" the shock state. Thus the shock volume fraction

is always equal to the initial volume fraction.

From Equations (4.24) and (4.25) the shock pressure and particle velocity can be

determined. The shocked values are independent of the initial solid volume fraction.

P- + (y (4.27)

(y- 1) + 2y(+) (4.28)

I The combination of parameters r + a is independent of the non-ideal solid parameter s. So

from Equations (4.27) and (4.28) it is deduced that non-ideal effects lower the shock3 pressure by a constant, a, and do not affect the shock particle velocity.

Based on the implications of Equation (4.24), the structure analysis is thus

conveniently split in two classes, subsonic and supersonic. As wave speed increases from

subsonic values, the initial pressure at the wave front is the ambient pressure until the

compaction wave speed is sonic. For wave speeds greater than the ambient solid sound

speed the initial pressure jumps are dictated by Equation (4.27). A plot of the leading

*pressure versus compaction wave speed is shown in Figure 4.2.

I

I
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I Figure 4.2 Pressure at Compaction Wave Head vs. Compaction Wave Speed

I As an aside, it is noted that a criterion for a solid equation of state is that the candidate
equation along with the Rankine-Hugoniot jump conditions be able to match experimental
piston impact data. Typically parameters for solid equations of state are determined by
choosing them such that shock data is matched. For voidless HMX ( = 1) observations of

i shock wave speed as a function of piston velocity are reported by Marsh [55]. By
rewriting Equation (4.28) in dimensional form, the wave speed D is solved for as a

function of piston velocity.

2

D-+ + U +Y(Y-l)cT O  (4.29)4 Up 4v T
From Equation (4.12), the term y (y- 1) c, To is the square of the ambient sound speed for
the non-ideal solid. In a result familiar from gas dynamics, it can be deduced from
Equation (4.29) that the minimum steady shock wave speed admitted in response to a
piston boundary condition is the ambient sonic speed. For values of y, cv, and To listed in

Table I, the shock wave speed D is plotted as a function of piston velocity up and data from
i Marsh in Figure 4.3.

I
I
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Figure 4.3 Piston Velocity vs. Solid Shock SpeedI
The parameter y has been fixed such that there is agreement between the data and the model

predictions. In the range of piston velocities shown, Equation (4.29) approximates a linear

D vs. up relation used by other modelers to match this data.

i Subsonic Compaction Waves

3 Subsonic End States

3 To study subsonic compaction waves admitted by Equation (4.19), a form for f, is

chosen:

2 2

2-
if (0) = it _ (4.30)

0 (2-0)2 1

This function satisfies the requirements described earlier, namely, it is a monotonically

increasing function of volume fraction and is constructed such that the system is in
equilibrium in the initial state. It has the same form as the plastic-phase static pore collapse

relation given by Carroll and Holt [59]. It is not the Carroll and Holt relation, as the
leading coefficient in the Carroll and Holt relation is the yield stress of the solid. In

I
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I Equation (4.30) the leading coefficient is a function of initial volume fraction. Predictions
of Equation (4.30) approximately match the experimental results of Elban and Chiarito

[61]. Figure 4.4 compares a curve fit of Elban and Chiarito's data for HMX with the
approximation given by Equation (4.30).

300

Elban and Chiaritos
200 Curve Fit for HMX- 11

64.6% TM])

' 100 Equation (4.30)

I 0
0.7 0.8 0.9 1.0I

3Figure 4.4 Comparison of Static Pore Collapse Data with Predictions of Equation (4.30)

To locate an end state, Equations (4.24) and (4.30) are solved simultaneously. For

73% theoretical maximum density (TMD) HMX (volume fraction = 0.73) and a variety of
subsonic wave speeds, curves of pressure versus volume fraction from Equations (4.24)
and (4.30) are plotted in Figure 4.5. As wave speed increases, the final volume fraction
increases. For wave speeds above 600 m/s nearly complete compaction is predicted. For3 wave speeds of about 200 rn/s or lower, no steady compaction wave is predicted. This is

solely a consequence of the assumed form of f. The form of f chosen crosses through the3 initial point with a positive slope and fails to intersect the pressure-volume fraction curves

for low wave speeds.
For 73% TMD HMX Figure 4.6 shows plots of compaction wave speed, final

density, final volume fraction, final pressure, and final mixture pressure (mixture pressure
= pressure * volume fraction) versus piston velocity. Also shown are the observations of3 Sandusky and Liddiard [43] and Sandusky and Bernecker [44] of wave speed and final
volume fraction and their predictions of pressure. The relatively small density changes3 verify that Baer's incompressibility assumption is a good approximation. Figure 4.7

shows predictions of compaction wave speed, final volume fraction, and final mixtureI
I
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pressure as a function of initial volume fraction for a constant piston velocity of 100 m/s
along with Sandusky's predictions as reported by Kooker [62].

Subsonic Structure

Equation (4.19) has been numerically integrated to determine the structure of the
subsonic compaction zone. The integration was performed using the IMSL routine
DVERK, a fifth and sixth order Runge-Kutta routine. A step size was chosen such that the
compaction zone structure was described by about 100 points. Using more points had little
effect on the results. Run times to determine a structure were less than ten seconds on the
UIUC Cyber 175 computer. In the numerical integrations pressure, velocity, and f are

used as given by Equations (4.24), (4.25), and (4.30), respectively. The integration was
performed starting at 4* = 0 and integrating towards * -+ .oo. To initiate the integration, a3 small positive perturbation of volume fraction was introduced which in this case causes a

small positive perturbation in pressure.
Figure 4.8 shows the particle velocity, volume fraction, and pressure in the

compaction zone for a subsonic compaction wave. Here the piston velocity is 100 m/s and
the initial volume fraction is 0.73. The compaction wave speed is 404.63 m/s. For an

assumed compaction viscosity of 1000 kg/(m s) a compaction wave thickness of 80 mm is
predicted. Because compaction viscosity defines the only length scale in this problem,

compaction viscosity only serves to define the compaction wave thickness. For the same
value of compaction viscosity Baer reports a compaction wave thickness of 31.9 mm. The3 discrepancy could be due to many effects including the definition of compaction zone
length. It is important to note that the length is of the same order of magnitude. Final

pressure, wave speed, and final volume fraction are unaffected by the value chosen for
compaction viscosity. By measuring a compaction wave thickness, an estimate could be
made for the compaction viscosity.

Supersonic Compaction Waves

Supersonic End StatesU
At 0.73 initial porosity for piston velocities greater than 884 m/s, supersonic

compaction waves are also admitted. Figure 4.9 shows plots of compaction wave speed,
final density, final volume fraction, final pressure, and final mixture pressure as a function

of piston velocity. These curves encompass both the subsonic and supersonic compaction

I
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wave end states. It is seen that the end states are a continuous function of piston velocity

In Figure 4.9 the shock wave speed as a function of piston velocity is plotted alongside the

compaction wave speed. For large wave speeds the predicted shock velocity converges
with the compaction wave velocity. It is demonstrated next that this is a consequence of
non-ideal effects having little importance at supersonic wave speeds. Furthermore it will be

demonstrated that the existence of subsonic compaction waves can be attributed solely to

non-ideal effects.

Supersonic Structure

Equations (4.24) and (4.25) can be simplified in the limit as a --- 0. The limit of small

a corresponds either to negligible non-ideal effects or large wave speed. In the limit as a
-' 0 Equations (4.24), (4.25), and (4.19) can be written as

P4)3* = S ' (4.31)

I 1v = v (4.32)

do - 0 .(PS 0 - Of* (0)) (4.33)

3 Equation (4.32) holds that in this limit the velocity is constant in the relaxation zone
and is equal to the shocked particle velocity. For s = 0 (that is for an ideal state relation)

Equation (4.32) is equivalent to Equation (4.29); thus, for an ideal state relation the

minimum compaction wave speed is the ambient sonic speed. Any subsonic compaction
wave admitted by the model (Equations (4.19) - (4.23)) is a direct consequence of non-

ideal state effects.

In the strong shock limit D -- oo, and both it and a -- 0. Equation (4.33) has a3 simple solution in this limit, assuming fG to be sufficiently bounded. (Note that because of

the logarithmic singularity at 4) = 1, that Equation (4.30) does not meet this criterion. The

general model is not, however, restricted to a function of this form) In this limit Equation

(4.33) becomes

I
I
U
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d, -7 -

i whose solution is

S1 ( 2)0. (4.35)

In terms of dimensional parameters, the compaction zone thickness found by equating the
exponent in Equation (4.35) to one and substituting the expression for piston velocity for

wave speed is estimated as

2y- 1~g
LCO = 

fl2(y-l) ) (4.36)Lcom ('+ l)PO0OU p

The length is proportional to compaction viscosity and inversely proportional to piston

velocity and the product of density and volume fraction.

An example of supersonic structure arising from the impact of a 1000 m/s piston is

now given. Figure 4.10 shows the particle velocity, volume fraction, and pressure in the

compaction zone for a supersonic compactiqn wave. Here the initial volume fraction is
0.73. The compaction wave speed is 3353.67 rn/s and the wave thickness is 2.9 mm. It is
seen that pressure and particle velocity undergo shock jumps. Volume fraction does not

undergo a shock jump; however, its derivative does jump at the initial point.

Compaction Zone Thickness

I It is possible to study the parametric dependence of compaction zone thickness. Given

a constant compaction viscosity, the model can predict compaction zone thickness as a

function of initial volume fraction and piston velocity. Should experiments be devised to
measure the compaction zone thickness, the experiments could provide a means to verify

the theory.
The thickness is defined as the distance at which the ratio of the difference ofI

U
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instantaneous volume fraction and initial volume fraction to the difference of final volume

fraction and initial volume fraction is equal to 0.99. The final volume fraction is available

from the algebraic end state calculation. Figure 4.1 la shows the compaction zone length

versus initial volume fraction for a piston velocity of 100 m/s and compaction viscosity of

1000 kg/(m s). It is not understood why the peak in this curve occurs. It is noted that for

high initial volume fraction, the zone length decreases as initial volume fraction increases in

accordance with the predictions of Equation (4.36) for supersonic compaction. It is

speculated that for low porosity a different mechanism dictates the subsonic compaction

zone length t,an supersonic length. Figure 4.1 lb shows compaction zone length versus

piston velocity for 73% TMD HMX and compaction viscosity of 1000 kg/(m s). The

compaction zone length decreases with increasing piston velocity in accordance with the

predictions of Equation (4.36) for supersonic compaction. Figure 4.1 Ic shows

compaction zone length as a function of compaction viscosity for a 100 m/s piston velocity

and 0.73 initial volume fraction. As no estimates are available for compaction viscosity,

compaction zone lengths for a wide range of compaction viscosity have been plotted.

Though plotted on a log scale, the relationship is truly linear with the compaction zone

length equal to a constant multiplied by the compaction viscosity.

I
I
I
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I V. STEADY STATE DETONATION WAVE ANALYSIS

I
Equations (3.1-15) can be re-cast in a more tractable form using the steady state

I assumption. First the equations are written in dimensionless form. For a right-running

steady wave the Galilean transformation 4 = x - Dt, v = u - D causes Equations (3.1-8) to

become eight ordinary differential equations. Here D is a constant defined as the steady

wave speed. Next, Equations (3.1), (3.3), and (3.5) may be eliminated in favor of

homogeneous mixture equations formed by the addition of the steady form of Equations

(3.1) and (3.2), (3.3) and (3.4), and (3.5) and (3.6), respectively. The resultant mixture

equations and the steady form of Equation (3.7) may be integrated to form algebraic

equations. Thus the steady two-phase model is described by four ordinary differential

equations and eleven algebraic equations.

Dimensionless Steady Equations

To reduce the number of independent parameters, dimensionless equations are

introduced. Define dimensionless variables where "*" indicates a dimensionless quantity:

i,= 4/L v~ i = vi /D P*i = Pi / (pi 0 D )

P*i = Pi / Pi0 ei = ei / D 2  T*i = cvi T. / D 2  r. =r /L

I i = 1,2

Here D is the wave speed; L, a length scale which can be associated with the reaction zone

length; pio' the initial density of phase i; cv., the specific heat at constant volume of phase i.

Define the following independent dimensionless parameters as

7C 3apmD 2 1 2  (P20D) r3 =hL2/3/P cI=1 3 (20Cv D )

C4  M 7C 75 = Pl0 / P 20 1C6 = CVl/Cv2 /7 = R/Cv + I

7t8 = s / (y2 D2) 9 = P20 DL/ g c  7l0 = q / D 2  7l1 = 010

I
I
I
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X 12 
= ro/L It 13 

= bp 10 C14/D
2

I t 17  = ^2

and the following dependent dimensionless parameters as
1 -It

18 11 7t

I 19 = [77 -1]C614[1+ 13 ]

I 20 1 - 711

I21 = R17" 1-n8

1C 1C C 7Cl + +7C4 + 7C + + 721

22 11L 6 14 2  19 j I X + I t10 21

I i1-It 1 1

C23 - R11 X19 +  7 21

t 21 5 19
15 1 -It 1 1

Then the dimensionless model differential equations (for compact notation the stars are

dropped) can be written as

ip 4
P202 v2J = -It (5.1)d4 1 r

2v2 L2dv 2 _ 22 [ ] = [v2 - vl] 12 (5.2)

de2  dv 2

Pv 2 d- + P2 = _-E3 [ 6 T2 T 1 -'' (5.3)

Vd4 9 1 02 " - 715PI 15  2] -1 rIdId I 9 4 2 LI 5 2 -(54
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The supplemental algebraic mixture, number conservation, state, and volume fraction

equations are

m pl 1l 2 22 C 18 (5.5)
lI

Pl1 VI+ P I + 7P 2 2v2 + P202 = I18 + I23 (5.6)
5

v2p v2  P
7C2 2'2J2 p2 22 (5.7)

U i r -v22  (5.8)

I]P
= I [ 7 -]pTjl+ 713 Pj] (59)

eI  = . . (5.10)
(7C 7- 1) p1 (1 + I 13 Pl)

7C~ = 1)T 1 +2c 13P + (It7-1)(1 + 7 13 P)2] (5.11)Cl 7 (71T1  23 1  71Pl)

P2 [ 17 - 1] P2T 2 - 8 (5.12)

e2 = 2+ 7C 10 (5.13)
m (Itl7 - 1)P2

2c2 = 7 l7(nT17 -1) T2  (5.14)

1 +2 = 1 (5.15)

I
Undisturbed conditions for the ambient mixture are

1 v 1 2 = v220 T2 =  14

I

I
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Equilibrium End State Analysis

To place a first restriction on the steady solutions admitted by Equations (5.1-15),

equilibrium end states are considered. It is later shown that the complete reaction state is an
equilibrium state for Equations (5.1-4). This result can be used at this point to completely

describe the gas phase equilibrium state. In the complete reaction state the mixture
equations (5.5-7) allow for the gas phase properties to be determined. For 02 = 0 (01 = 1),
Equations (5.5-7) can be combined to form an equivalent two-phase Rayleigh line (5.16)

and two-phase Hugoniot (5.17)

P 1 23 i 1 8 ( / 18 - /P (5.16)

I 11"6"14" 1 123 l/P1 8 = 1-711)( 14+7 10) (5.17)1 8 T 8] = 5 I18

I From the state relations (5.9,10) the energy el can be written as el(Pl,pl) which is

substituted into the Hugoniot equation (5.17). The Rayleigh line equation (5.16) allows pi
to be eliminated in favor of P 1. Substituting this in the reduced Hugoniot equation results

in a cubic equation for P1. Depending on the wave speed three cases are possible: three

distinct real solutions, two equal real solutions and a third real solution, and a real solution
and a pair of complex conjugate solutions. When three distinct real solutions exist, two are

analogous to the weak and strong solutions predicted by the simple one-phase theory. The
third solution has no such counterpart and often is a nonphysical solution with P, < 0. A

sketch of the two-phase Rayleigh lines and Hugoniots for wave speeds corresponding to
the three classes of solutions is shown in Figure 5.1.

1 TWO-PHASE HUGONIOT

NOPWY S OINCA L STONG SOLUON (SUBSONIC)
SOLITIONS -

TWO-PHASE RAYLIGH UNE

(D > CJ VELOCITY

WEAK SOLUTION

CJ SOLUTION h~(SUPERSONIC)

I 1/p

Figure 5.1 Sketch of Two-Phase Complete Reaction Rayleigh Line and HugoniotI
I



i
48

By imposing the condition that two real roots are degenerate (which forces the

Rayleigh line and Hugoniot to be tangent) a minimum detonation velocity can be found.

This will be called the CJ condition. Because the detonation velocity D is contained in the

dimensionless parameters, it is convenient to return to dimensional variables to express CJ
conditions. Define the bulk density, bulk pressure, and bulk internal energy Pa, Pas and ea:

Pa =  P1001l0 + P20020 ' Pa = P10 10 + P20020 (5.18, 19)

I ea Pl 0 ¢10 el0 + P020 20 e20  (5.20)

P10010 + P20020I
The dimensional equations which must be solved to determine the two-phase CJ end state

* are shown next.

SP1 =  Pa+ p2D2( x/Pa 1/P,) (5.21)

I (Pa + P1) (/p 1  /p) + cvlP1  -e =0 (5.22)

2 Rp I (bpI + 1) a

K 
dPl[5.21 - 5.22 (5.23)
dp Id pId 1 1 "

Equation (5.21) is the dimensional form of the Rayleigh line equation (5.16), Equation

(5.22) is the dimensional form of the Hugoniot equation (5.17), and Equation (5.23) is the
tangency condition. These three equations have been solved by iteration for the three3 unknowns, P1, Pl, and D. The equations have an exact solution in terms of a quadratic

equation in the ideal gas limit (b = 0). The ideal gas solution has been used as a first
estimate for the iterative solution.

The effects of a non-ideal gas and small initial bulk pressure on CJ conditions can be
seen by writing the CJ conditions as Taylor series expansions which are valid in the limit as
the dimensionless groups bPa and Pa/(paea) approach zero. These expressions were
obtained with the aid of the computer algebra program MACSYMA and have been verified

I by comparing predictions to the solutions obtained by iteration. (The same technique can
be used to obtain CJ deflagration conditions for a two-phase material; these conditions areI

I
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m reported in Appendix D). The Taylor series expansions for the CJ detonation condition for
a two-phase material are given below. The leading coefficients on the right hand sides of

Equations (5.24-28) are the exact solutions in the limit of no non-ideal gas effects (b = 0)
and zero initial bulk pressure (Pa = 0). The bracketed terms in these equations represent the

first order corrections for finite non-ideal effects and finite initial bulk pressure. From the

expressions, it is seen that non-ideal effects tend to raise the detonation wave speed and3 pressure, lower the density, and have no effect on the gas velocity or temperature. Finite
initial bulk pressure tends to lower the detonation wave speed, pressure, density, and gas
velocity, and has no effect on the temperature at this order of the expansion.

2e R(R+~i ____2___D a (5.24)Cvi 2 + b 2R(R2c pl) ea

2 e R c P
_- a V1_+ b_ a (5.25)

C Vp 
2R (R + 2cvi) Paea

2cl +R c2 P
PCj = cV1.+ R Va 1 c +Rbpa-2 vl ea_ (5.26)

V1___ V______i+R a 1 + 2 R(R +2c) (5.26)

c = aR 2R-- (5.27)[ aaj
2(cv +R)e

RcvI 
(5.28)TO 2cVl + R Cvl

For Pa = b = 0 these formulae show that it is appropriate to treat the two-phase CJ
condition as a one-phase CJ condition using Pa and ea as effective one-phase properties.

Fickett and Davis [401 give equations for one-phase CJ properties for an ideal gas in the

I limit of small initial pressure. In these equations, one can simply substitute the bulk

density for the initial density and the bulk internal energy for the chemical energy to obtainI the two-phase CJ equations. It is important to note that the two-phase CJ properties are
predicted from the full model equations. The two-phase nature of the conditions is
embodied in the definitions of bulk properties, which have no one-phase counterpart.

Figure 5.2 shows plots of the CJ properties predicted by Equations (5.24-28) along
with the exact CJ properties predicted by iterative solution of Equations (5.21-23). Also

I
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i plotted on these curves are predictions of CJ properties from the thermochemistry code
TIGER [54] as reported in Refs. 1 and 47. It is seen that the predictions of the

approximate formulae more accurately predict the exact solutions for low initial bulk
density. The improved accuracy for low initial bulk density can be attributed to the form of3 the Taylor series prediction, whose accuracy improves as the dimensionless parameter bPa

approaches zero. Except for the CJ density, the approximate formulae estimate the general3 trends for a large range of initial bulk densities.
Equations (5.24, 25) indicate that the CJ state is quite sensitive to the non-ideal

parameter b, a parameter allowed to vary in Ref. 47 to match CJ TIGER predictions. In

particular, when the dimensionless group bPa is of order 1, non-ideal effects become quite
important. This is demonstrated in Figure 5.3 which for constant bulk density plots CJ
wave speed versus the non-ideal parameter b. This plot was obtained by solving the full

non-linear equations (5.21-23).

1
3 100 Initial Bulk Density - 1333 kg/rn

14000

12000-

10000-

U8000-

1 6000"

4000

i ~2000S,.000 0.001 0.002 0.003 0.004

b (m3 /kg)I
Figure 5.3 CJ Wave Speed vs. Non-Ideal Parameter bI

By numerically studying exact two-phase Cl conditions, it can be inferred that the CJ
point is a sonic point; that is, the gas velocity relative to the wave head is equal to the local

gas phase sound speed. In addition, numerical studies indicate that for D > DCj the gas

velocity relative to the wave head is locally subsonic at the non-ideal strong point, while the
gas velocity relative to the wave head is locally supersonic at the non-ideal weak point.
This result agrees with the results of the simple one-phase theory.I

I
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I Shock Discontinuity Conditions

I A shock discontinuity is an integral part of a two-phase detonation. As in one-phase
ZND theory the shock wave is a discontinuity that raises the pressure, temperature, and3 density of the material, initiating significant chemical reaction. In the context of the one-

dimensional steady model, the shock wave is supported by the chemical energy which is3 released by the reaction; thus the process is self-sustaining.

The shock conditions are determined from an algebraic analysis and provide the initial

conditions for integrating the steady equations (5.1-4). These conditions are defined by

Equations (5.1-15) by assuming that within the shock wave, reaction, drag, heat transfer,
and compaction have no effect. Thus through the shock discontinuity, differential

equations (5.1-4) may be integrated to form algebraic relationships. These algebraic

equations admit four physical solutions: 1) the ambient state, 2) shocked gas, unshocked3 solid, 3) unshocked gas, shocked solid, and 4) shocked gas, shocked solid.
This model ignores the effects of diffusive momentum and energy transport. If3 included, these effects would define a shock structure of finite width. Here it is assumed

that the length scales on which these processes are important are much smaller than the
relaxation scales which define two-phase detonation structure. To the author's knowledge,

this assumption, common in the analysis of shocked systems, has not been examined either
experimentally or theoretically for two-phase reactive systems.3 The shock conditions are given below:

I [ 2 v 2 ] 0 (5.29)
0

[P 2 02+ P 2  J = 0 (5.30)

3 [22v2 (e 2 +v2/2+P 2 /P 2  = 0 (5.31)
0

020= 0 (5.32)I[o o o
I
I
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I Here "s" denotes the shocked state and "0" the undisturbed state. Equations (5.29-32)

and state relations (5.12, 13) are sufficient to calculate the shock properties for phase two.

The shock state for the solid phase is independent of the initial porosity. This is apparent

from Equation (5.32), which says that the porosity does not change through the shock3 discontinuity ((s = 420), and from Equations (5.29-31) where it is seen that a common
factor 0 cancels from each equation. For the solid phase there are two solutions to
Equations (5.29-32): the inert solution and the shock solution. Exact expressions for the

solid phase shock state are:

.2- 1 2 _ 78 (5.33)
P~s=  +18

17

717 + 1

P2s 7 17- 1) (1 + 2n 14,E17) (5,34)

T ( 2- r14(117- 1)2) ( 1+ 2c 14x 17)I T2 s=+) (5.35)
(N 17 + 1)2

e 2s = (1 + 27 14 r 17) 2 - ('14- 'r8)(I17 - 1)2 (5.36)(t x17 + 1)2

1 -7C17( 2 n 14 17 -22c14 + 1)
v 2s = 717 + 1 (5.37)

02s = l-Xll (5.38)

I In Figure 5.4, the dimensional solid phase shock pressure is plotted versus the shock wave

speed.
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Figure 5.4 Solid Shock Pressure vs. Shock Wave SpeedI
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The shock properties for phase one are implied by the mixture equations (5.5-7) and

state relations (5.9-10). By subtracting the solid shock equations (5.29-31) from the
respective mixture equations (5.5-7), one obtains gas shock jump equations which are3 dependent only on gas phase properties. As for the solid phase, in these equations a
common factor of 10 cancels from each equation. Three solutions to the gas shock jump

relations exist: the inert solution, a nonphysical solution, and a shock solution. In the limit
as n 13 (or b) approaches zero, the nonphysical prediction of gas density approaches - i/nt13

and is therefore rejected. The full solution to the non-ideal shocked gas equations are

lengthy, so here the shocked gas solution in the limit of an ideal gas will be presented. The
full non-ideal shocked solution is determined by solving a cubic equation described in
Appendix E. The shocked ideal gas state (b = 13 = 0) is described by the following
equations, which can be easily rewritten as classical ideal gas shock relations by using the

I definitions of the dimensionless parameters to write these equations in dimensional form.

PS 2 - i14C6( X7" 1 2  (5.39)1 =
7 + 1

P 77+ 1 (.0

ils (7t7 - 1) (1 + 2 14 t7) (5.40)

I(27c14 X6 IC7 + 1) (2 - 7c147C6 (7 1)2)

els = Tls 7C 7 +1) 2 (5.41)3 ~(it 7-+1)2

s- (7t 7-1) (1 + 27t 147 6i 7) (5.42)1s 7t7 + I

I
Figure 5.5 shows a plot of the dimensional gas phase shock pressure versus the shock3 wave speed for the non-ideal gas.

I
I
I
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Figure 5.5 Non-Ideal Gas Phase Shock Pressure vs. Shock Wave Speed

3 Two-Phase Detonation Structure

Before studying solutions of the full equations (5.1-15), a simplified model, reduced
to two differential equations is considered. These equations have a clear geometrical
interpretation in the two-dimensional phase plane. Results from this model will be

compared to those of the full model. In this section the steps necessary to reduce Equations
(5.1-15) to two equations will be described. Next, a comparison of acceptable detonationIstructure predicted by the two-equation and full model equations is given. Finally, an
example is given of an non-physical solution again comparing the results of the two-3 equation model with those of the full model, and an explanation is given for why this

solution is non-physical.
The steady equations (5.1-15) are simplified significantly when heat transfer and

compaction effects are ignored. This corresponds to the limit 7r3 - 0 and x9 -+ 0. From
the definition of the dimensionless parameter 73 , it can be concluded that in this limit the
heat transfer in the reaction zone, roughly h L2/3 / D, is small compared to the thermal
capacity P20Cvl. By setting i9 to zero, it is assumed that compaction effects are negligible;

Sin this limit Equation (5.4) holds that all volume change is due to chemical reaction. This is
achieved mathematically by allowing the compaction viscosity gt to approach infinity.5 In these limits it is possible to integrate Equations (5.1) and (5.3) and write two
autonomous ordinary differential equations in two unknowns, solid density and solid
volume fraction, that determine the system completely. All other thermodynamic variables

can be expressed as algebraic functions of solid density and volume fraction. With the two
ordinary differential equations it is easy to study the geometry of the two-dimensional3phase space in the P2-02 phase plane. The geometry of the phase plane determines whether

a detonation structure can exist in theory.I
I'
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I To derive the two-equation model requires a lengthy algebraic analysis. Details can be
found in Appendix E. To summarize the process, state relations (5.9, 10, 12, 13) are used
to eliminate energy and temperature of both phases in all remaining equations. Number
conservation (5.8) is used to eliminate particle radius r from all equations. Mixture
equations (5.5-7) are used to write gas phase properties as algebraic functions of solid
phase properties. In uncoupling the mixture equations, a complicated cubic equation must
be solved. One root corresponds to a shocked gas, associated with what is known in one-

phase ZND theory as the strong solution. Another root corresponds to an unshocked gas,
associated with the weak solution in one-phase ZND theory. The third root is a non-

physical consequence of the virial equation of state; negative gas density, temperature, and
pressure are predicted with this root. Substitution of these results into Equations (5.1-4)
yields four ordinary differential equations in four unknowns, P2, 02, v2, and P2 .

When the limit K 3 --- 0 and Kt9 -- 0 is considered, combinations of two of these
equations can be integrated. By eliminating the gradient of volume fraction by substituting
Equation (5.4) into (5.1), a homogeneous equation is found for the product of solid density
and velocity. When integrated this gives an algebraic relation between particle density and

velocity. The solid energy equation (5.3) can then be written in terms of a homogeneous
relation involving only solid pressure and density by using the integrated mass equation to
eliminate velocity. Initial conditions are applied corresponding to either a shocked or
unshocked solid state. These integrated equations allow both solid velocity and pressure to
be written as functions of solid density. The integrated equations are given below.

v2 = -- (5.43)
P2

I P2  2 8 (5.44)

I 2 K (K14( 17 - )2 [( 17
- 1) (1 + 2 714i 17) ,7 17

with K = K 17 +1 ( R17 +l " shocked solid

KC21 + rt8  unshocked solidI
Here K is a constant which depends on whether the initial solid state is shocked or

unshocked. With these results, the momentum equation (5.2) can be used to determine an
explicit equation for the derivative of solid density. This equation along with theI

I



I
59

I compaction equation (5.4) form the two-equation model. The equations which govern the

structure are written below as

Sdp2 f(p2',0)
2= 2 2 (5.45)

d4 g(p,2' 2)

I d*2 h(p2',')
2= 2 2 (5.46)

d4 g(p ,212)

with f, g, and h defined as follows

f(P 72 : 2(v 1-V2 )p2o - (Kp2 
17 -8) p3P4 (5.47)

g(P2 2 = r (1 17 Kp2 -+1) (5.48)

2'2) (7 2

h(p 2, 12 = gP 202 P74 ( Kp171 - 1) (5.49)

These equations are expressed in terms of the functions f, g, and h, which are
functions of P2 and 02 only. It is seen from Equations (5.45, 47) that the solid density
changes in response to drag effects, embodied in the terms multiplying the drag parameter

I 72, and chemical reaction effects, embodied in terms multiplying the reaction parameter rIl.
Drag terms are inherently present in te momentum equation, (5.2), from which Equation

I (5.45) is derived. Reaction effects arise since the momentum equation (5.2) predicts
changes in momentum due to changes in volume fraction. By substituting the volume
fraction equation (5.4) into the momentum equation, reaction effects are introduced.

Effectively then the momentum equation predicts that solid density changes in response to
drag and chemical reaction in the two-equation model. From Equations (5.46, 49) it is
seen that volume fraction changes are predicted only in response to chemical reaction.
Potential equilibrium states exist when f and h are simultaneously zero. From the3 functional form of f and h, it is seen that this corresponds to a state where density changes
due to drag are balanced by density changes due to reaction and where volume fraction3 changes are zero due to complete reaction.

I
I
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m When g(p 2,0) = 0, and f, h * 0, infinite gradients are predicted. The condition g = 0

is either a complete reaction or solid phase sonic condition as described below. Appendix
E shows in detail how for the two-equation model, the solid phase is sonic when Equation

(5.51) holds.I
r = 0 (5.50)

p2 = (N17K) t 7+  (5.51)

When either Equations (5.50) or (5.51) hold, forcing g to zero, it is seen from Equation

1 (5.49) that h is simultaneously zero.
The condition g(P2,02) = 0 leads to difficulties regarding the division by zero. The

difficulties in the continuation of the solution through the g = 0 state are removed by
introducing a new path variable z and considering 4 as an independent variable defined as

3 follows

= g(P ,2) 4(0) = 0 (5.52)Idz 2 2

m In terms of the new independent variable z Equations (5.45, 46) are transformed to the

following equations

d- - f (p2  1 )  (5.53)

Iz 2 2
l h(p , ) (5.54)

dz 2 2

m Equations (5.53, 54) are autonomous in the P2-0 phase plane. Equation (5.52) may be
thought of as an auxiliary relationship to determine t once the structure defined by the

above equations is determined. Whether Equations (5.53, 54) should be integrated
forward or backward in z is a relevant question. The equations should be integrated so that

m goes from 0 to -oo. From Equation (5.52) it is seen that the direction of change of 4 with
respect to z depends on whether the solid phase is subsonic or supersonic. If the initiall

Ii
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I state of the solid is unshocked, the solid is locally supersonic, g > 0, and a negative dz
corresponds to a negative d4. If the initial state of the solid is shocked, the flow is locally

* subsonic, g < 0, and a positive dz must be chosen to recover a negative d4.
In the context of this reduced model there are several requirements for an admissible

detonation structure. An admissible steady structure is defined by an integral curve which
begins at the initial point in the P2-02 plane and travels in that plane to an equilibrium
position where f and h are simultaneously zero. This point is defined by the intersection of

the curves f = 0 and h = 0. In addition further restrictions are placed on the solution. It is
required that the gas and solid thermodynamic variables density, pressure, and temperature,
are always positive and real. Also it is required that all physical variables are single-valued
functions of the position variable . Based on these restrictions parametric conditions can

be obtained for admissibility of a detonation solution.

The conditions under which thermodynamic variables become either negative or
imaginary are checked numerically. By examining a few limited cases, it has been found
that there are regions in the P2-02 plane where gas phase pressure, density, and temperature
are negative. These regions are bounded by curves in the p2-02 plane where gas density,

pressure, and temperature are zero. In solving the cubic equation for the gas phase
properties, imaginary gas phase quantities are sometimes predicted. It has been found
numerically that the border of the imaginary region corresponds to a sonic condition in the

gas phase.

The geometry of the f = 0 and h = 0 curves is critical in determining the integral curve
which defines the steady state solution. Depending on the relative orientation of these
curves and the initial state, many classes of solutions, each with a distinct character, are
available. Some solutions reach an equilibrium state, defined at the intersection of the f = 0
and h = 0 curves. The structure of the steady detonation solution is strongly influenced by

the nature of the equilibrium point, which can be classified as a source, sink, saddle, or
spiral. For example, if the equilibrium point to which the integral curve is drawn is a sink,
then a continuum of wave speeds are found for which steady detonations are allowed. If
the eqitilibrium point is a saddle, there is only one wave speed which will bring the integral
curve to the equilibrium position. For some wave speeds the orientation of the f = 0 and h
= 0 curves prevents solutions from reaching an equilibrium state; these solutions cannot be
classified as steady solutions. Among these types of solutions are those that pass through a
solid sonic point and become physically unacceptable, multivalued functions of distance.
Figure 5.6 shows sketches of phase planes for two classes of solutions, one an acceptable

detonation structure, the other a nonphysical solution.

I
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¢2 Acceptable DetonationPhase Plane Structure 2 Nonphysical Solution
Forbidden Zone
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Figure 5.6 Phase Plane Sketches of Physical and Nonphysical Solutions

Each sketch shows the separatrix lines f = 0 and g = h = 0. The equilibrium position
is at the intersection of these curves. Each curve shows a solid phase sonic line, g = h = 0,
forbidden regions in which gas phase properties are not physical, and integral curves which3 originate from the initial condition. For the acceptable structure the integral curve travels
from the initial state to the equilibrium position. By changing the flow conditions, the
topology of this phase plane is altered, shown in the adjacent sketch. In this sketch, the
integral curve is driven through the solid sonic line and is incapable of reaching the
equilibrium point. As explained below, past the solid sonic line, the solution is double-3 valued and therefore not physical.

Thermodynamic variables become double-valued functions of distance when a solid
sonic condition (g = 0) is reached at a non-equilibrium point in the phase plane (f 0).
From Equation (5.52), it is seen that the direction of change of with respect to z changes
when the solution passes through a solid sonic point. Thus 4, which starts at zero and

moves towards -oo as reaction progresses, changes direction and moves towards +oo at a
critical point 4mi when a solid sonic condition is reached. Through this point Equations
(5.53, 54) predict a continuous variation of density and volume fraction. At the solid sonic
point the derivatives of P2 and 2 with respect to z are finite, and the derivatives with
respect to 4 are infinite. At any given location 4, 4 > 4min, two values of each

thermodynamic variable will be predicted. This is physically unacceptable.I
I
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I Results analogous to one-phase ZND theory can be obtained with the two-equation
model. For the input conditions of Table I, with the heat transfer coefficient h = 0 and3 compaction viscosity gc - oo, an initial porosity greater than 0.19, and an initially shocked

gas and unshocked solid, a CJ structure can be defined. In these limits there is no heat
transfer or volume change due to pore collapse. The CJ wave speed is determined from
solving the earlier-described equation set (5.21-23). Wave speeds less than the CJ speed

are rejected because imaginary gas phase quantities are predicted near the complete reaction

end state. Wave speeds greater than CJ are admitted by this model and correspond to the

strong ZND solution. Such a wave leaves the gas at a velocity which is subsonic relative to

the wave front. As in ZND theory, piston support is required to prevent rarefaction waves
from damping the reaction zone structure. For the CJ wave, the final velocity is sonic and3 no piston support is necessary to support the wave.

The solution is driven to a sink in the P2-02 plane. To show this point is a sink, one
first finds the equilibrium point by solving the algebraic problem f(P2, 4-) = 0, h(p 2, 2) =
0. The differential equations (4.53, 54) are then linearized about this equilibrium point.
These linear differential equations can be solved exactly to determine the behavior of any

integral curve which approaches the equilibrium point. In this study, for an shocked solid
and shocked or unshocked gas, it was found that all integral curves in the neighborhood of
the equilibrium point were attracted to the equilbrium point; in the terminology of ordinary

differential equation theory, that point is classified as a sink.
The ordinary differential equations of the two-equation model and full, four-equation

model were solved numerically. Integration was performed using the IMSL subroutine
* DVERK, a fifth and sixth order Runge-Kutta routine, on the UIUC Cyber 175. Step sizes

* were chosen such that none of the fundamental variables, P2, O, v2, and P2, changed by
more than 5% in value in any given integration step. Typically abcut two hundred

integration steps were sufficient to describe the reaction zone. A typical integration took
twenty seconds to complete.

For an initial solid volume fraction of 0.70, Figure 5.7 shows a plot of the phase plane

for a CJ wave speed of 7369 m/s. This curve shows the sonic line (g = h = 0) on P2 =
1.35, the complete reaction line (g = h = 0) on 2= 0 and the f = 0 line. It is seen from this
curve that the only equilibrium point is at (P2,0) = (1.04, 0). The vector field
superimposed on this figure, defined by Equations (5.53, 54), shows this point is a sink

which is confirmed by a local linear analysis near the equilibrium point. The integral curve

connecting the initial state to the equilibrium point is also plotted on this figure. This curve

is obtained by numerical integration of Equations (5.53, 54). This integral curve moves in
a direction defined by the vector field of the phase plane. Curves of zero gas phase
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pressure are plotted in this figure along with the curve defining the boundary between pure
real and imaginary gas phase quantities. The gas velocity is locally sonic (M1

2 = 1) on the

boundary of the region where imaginary gas phase properties exist. This indicates that the

solution is non-physical if the gas passes through a sonic condition at a point of incomplete

reaction.
When the full model equations are considered, general results from the two-equation

model are retained. It is more difficult to interpret these results as the phase space is four-

dimensional. With a given set of initial conditions, the gas phase CJ end state is the same
whether the two-equation or four-equation model is used. The solid phase end state and

details of the reaction zone structure do depend on which model equations are used. Plots

of predicted detonation structure are shown in Figure 5.8, which plots solid and gas

density, lab velocity u, pressure, temperature, Mach number, particle radius, and solid

volume fraction versus distance 4. Also plotted on this figure are results from the two-

equation model. It is seen that both models predict results of the same order of magnitude.

Gas phase quantities are nearly identical for both models. While there are small differences

in solid phase predictions, these results are remarkable as there is no real basis to assume

the the limits taken are appropriate for this class of models. These results show that

material compaction and heat transfer are not important mechanisms in determining two-

phase detonation structure and that there is justification in using the two-equation model as
a tool for understanding the full model equations. A comparison of some results of the two

models is given in Table II.

In Figure 5.8 it is seen that the gas phase is shocked while the solid phase is

unshocked. It is noted from Figure 5.8c that the gas pressure continues to rise past the
initial shock gas pressure, in contrast to the results of the simple one-phase ZND theory,

which predicts the pressure to be a maximum at the shock state. From this maximum,

known as the "Von Neumann spike," the pressure decreases to the equilibrium CJ

pressure. It should also be noted that the high gas phase temperature (- 10,000 K)

indicates that ionization, dissociation, and radiative heat transfer could be important

mechanisms in the reaction zone. These effects have not been considered but could be
incorporated into future work.

Non-physical solutions are now considered. Such solutions exist below a critical

value of initial solid volume fraction. The critical point is shown in Figure 5.9, which plots

CJ wave speed versus initial bulk density Pa (Pa = Pl10 + P20020). This figure also

compares predictions of this model with those of the unsteady model of Butler and Krier

[ I ] and those of the equilibrium thermochemistry code TIGER given in Ref. 1. The feature

of a critical initial bulk density has not been identified by other models.
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I Table II

COMPARISON OF TWO AND FOUR EQUATION MODEL PREDICTIONS FOR
CJ WAVES WITH AND WITHOUT LEADING GAS PHASE SHOCK

I Leadgas Shoc No Leading Gas Shock

3 Two-Equation Full Two-Eguation Full

Initial Bulk Density 1,333 kg/m 3  1,333 kg/m3  1,333 kg/m 3  1,333 kg/m3

3 Reaction Zone Length 13.00 mm 12.89 mm 62.1 mm 61.7 mm

CJ Wave Speed 7,369 m/s 7,369 m/s 7,369 m/s 7,369 m/s

I CJ Pressure 19.4 GPa 19.4 GPa 19.4 GPa 19.4 GPa

CJ Density 1,821 kg/m3  1,821 kg/m 3  1,821 kg/m 3  1,821 kg/m 3

CJ Temperature 4,176 K 4,176 K 4,174 K 4,174 K

3 CJ Gas Velocity 1,976 m/s 1,976 m/s 1,974 m/s 1,974 m/s

(CJ Gas Mach Number)2  1 1 1 1

Maximum GasTemperature 11,119 K 11,108 K 4,174 K 4,174 K

Final Solid Pressure 0.716 GPa 0.636 GPa 0.716 GPa 0.636 GPa

Final Solid Density 1,973 kg/m3  1,962 kg/m 3  1,973 kg/m 3  1,962 kg/m3

3 Final Solid Temperature 349 K 344 K 349 K 344 K

Final Solid Velocity 272 m/s 429 m/s 272 m/s 428 m/s

i (Final Solid Mach Number)2 4.82 4.67 4.82 4.67

I
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For a value of initial solid volume fraction of 0.20, very near the critical bulk density,
an acceptable detonation structure is obtained. A phase portrait, vector map, and integral

curve is shown in Figure 5.10. The figure resembles Figure 5.6, but the curves have all3been skewed. Note that the integral curve nearly reaches the sonic state before turning
around and travelling to the complete reaction end state.

For an initial solid volume fraction of 0.15, a non-physical solution is obtained for a

CJ wave speed. The two-equation model's phase plane is shown in Figure 5.11. The

integral curve in this plane passes through the solid sonic line at a non-equilibrium point

causing the solution to become double-valued. A plot of the solid phase Mach number is
shown in Figure 5.12 for both the two and four equation models. Again both models
predict nearly identical results. It is seen from Figure 5.12 that infinite gradients with
respect to are predicted precisely at the point where the solid phase reaches a sonic

I velocity (M 2
2 = 1).

I
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3 Solutions with no leading shock in either the gas or solid phase are also admitted by

this model. Figure 5.13 shows the phase portrait, vector map and integral curve for a CJ
wave with no leading gas or solid shock propagating through a mixture with an initial solid

volume fraction of 0.70. Again, the equilibrium point is a sink. As summarized in Table

II, the main difference between this case and the case with the leading gas phase shock is

that the reaction zone is much longer (62 mm vs. 13 mm) for no leading shock in the gas

phase. Again both two and four equation models predict similar results. The CJ gas phase3 end state is identical regardless of whether the initial gas state is shocked or unshocked, or

whether the two or four equation model is used. This is because the complete reaction CJ

I state is independent of the structure of the detonation. Small differences in the CJ

temperatures and gas velocities can be attributed to numerical roundoff errors as the CJ

state is extremely sensitive to the CJ wave speed. In generai the solid end state can vary for

each state presented in Table II. It is noted that the solid phase end state predicted by the
two-equation model is nearly the same for both the unshocked and shocked gas as is the

I solid phase end state for the full equation model.

I
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For wave speeds greater than CJ, strong and weak waves can be predicted. For an
initial solid volume fraction of 0.70 and a wave speed of 8,000 rr,'. (which is greater than

the CJ wave speed of 7369 m/s) Figures 5.14 and 5.15 show plots of the two-equation

model's phase portraits for the strong (initially shocked gas) and weak (initially unshocked

gas) case. In each case the solid is initially unshocked. The equilibrium points are sinks in

both cases. The results of these calculations for both two and four equation models are

summarized in Table M. For the strong case the reaction zone is shorter than for the3 corresponding CJ wave with a leading gas phase shock. For the weak case the reaction

zone is longer than for the corresponding CJ wave without a leading gas phase shock.

Again two and four equation models predict similar results.

This study predicts a continuum of two-phase detonation wave speeds as a function of

piston velocity. CJ wave speed is plotted as a function of piston velocity in Figure 5.16.

For wave speeds greater than CJ, piston support is required to support the wave. The CJ
wave can propagate with or without piston support as the complete reaction point is a gas

I phase sonic point.

II 13000 -

12000-' Weak Branch Strong Branch

11000-

I , 10000-

Cn 9000

8000 Initial Solid Voiume Fraction = 0.7

U 7000-
00 CJ Point

6 0 a I " I • I

0 1000 2000 3000 4000 5000 60003 Piston Velocity (m/s)

Figure 5.16 Two-Phase Detonation Wave Speed vs. Piston Velocity

I For piston velocities below CJ, a continuum of weak waves are predicted. The

implications of this are unclear. As the complete reaction point is supersonic, the piston

support is not necessary. This suggests that the solution may not be unique. Simple one-

phase ZND theory also predicts a continuum of weak waves. Fickett and Davis [401
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I Table III

COMPARISON OF TWO AND FOUR EQUATION MODEL PREDICTIONS FOR
STRONG AND WEAK DETONATIONS, D = 8,000 M/S

I Leading Gas Shock (Strong) No Leading Gas Shock (Weak)

i o-Equatio Full Two-Eqaion Full

Initial Bulk Density 1,333 kg/m3  1,333 kg/m3  1,333 kg/m3  1,333 kg/n 3

Reaction Zone Length 10.2 mm 10.1 mm 71.4 mm 70.9 mm

Wave Speed 8,000 m/s 8,000 m/s 8,000 m/s 8,000 m/s

3 Final Gas Pressure 32.3 GPa 32.3 GPa 13.8 GPa 13.8 GPa

Final Gas Density 2,145 kg/m3  2,145 kg/m 3  1,590 kg/m 3  1,590 kg/m3

Final Gas Temperature 5,274 K 5,274 K 3,710 K 3,710 K3 Final Gas Velocity 3,029 m/s 3,029 m/s 1,291 m/s 1,291 m/s

(CJ Gas Mach Number)2  0.567 0.567 1.99 1.99

3 Maximum Gas Temperature 12,526 K 12,514 K 3,710 K 3,710 K

Final Solid Pressure 0.744 GPa 0.676 GPa .657 GPa .542 GPa

Final Solid Density 1,975 kg/m3  1,966 kg/m3  1,967 kg/m3  1,953 kg/m 3

3 Final Solid Temperature 351 K 346 K 345 K 337 K

Final Solid Velocity 306 m/s 484 m/s 273 m/s 432 m/s

3 (Final Solid Mach Number)2 5.63 5.44 5.78 5.66

U
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m discuss this issue for one-phase theory. Though this issue is still not settled for the one-
phase model, some have suggested that the weak waves may be ruled out as unphysical

because of a lack of an initiation mechanism. Fickett and Davis show results of more
complicated one-phase models which indicate that a unique weak wave speed exists when

such mechanisms as diffusive heat and momentum transfer are taken into account. A
similar result may hold for two-phase detonations.U

I
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U VI. CONCLUSIONS AND RECOMMENDATIONS

I
Compaction Waves

The piston-impact problem for a compressible porous solid has been solved in the

context of a steady two-phase model neglecting gas phase effects. With this model, it is

possible to obtain an exact solution for the compaction wave speed, final porosity, and final
pressure. The degree of accuracy of the predictions can be attributed to the ad hoc

estimates for the non-ideal solid parameter and the assumed form of the static pore collapse

function, f. Within the framework of this model it is possible to understand the general3 features of a compaction wave. Two classes of compaction waves have been identified,

subsonic waves with no leading shock, and supersonic waves with a leading shock. It is3 predicted that the magnitude of the supporting piston velocity determines which class of

wave exists, with low piston velocities resulting in a subsonic structure and high piston

velocities resulting in a supersonic structure.

A compaction wave with structure has been predicted because a dynamic pore collapse

equation has been used. As summarized by Kooker [62], many compaction wave models3 do not consider dynamic pore collapse; rather they enforce static pore collapse (P =f)
throughout the flow field. In zero gas density limit, such an assumption results in a3 compaction wave without structure. The pressure discontinuously adjusts to a static

equilibrium value. However, it is not established whether two-phase models with static

pore collapse are hyperbolic, a necessary condition if discontinuities are to be admitted and

for a well-posed initial value problem. For two-phase models assuming pressure

equilibrium between phases but not incorporating quasi-static compaction a-a,

Lyczkowski, et. al. [53] have identified regimes in which unsteady two-phase equations

are not hyperbolic.3 There are many ways to extend the compaction wave study. By including the effects

of the gas phase, it should be possible to determine how the gas phase's presence modifies3 the compaction wave structure. By including the effect of particle size in f, it should be
possible to model the experiments of Elban, et al. [631 which show that the static pore

collapse stress level is a function of both volume fraction and particle size. By considering

the solid to be composed of particles, it may be possible to model the effect of particle

breakup on the results when f is assumed to be a function of particle size.

I
I
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3 Detonation Waves

3 It is thought that the most important contribution of this study is that existence
conditions have been predicted for a steady, one-dimensional, two-phase detonation in a
granular material. The available detonation solutions are restricted by both algebraic

equilibrium end state analysis and by an analysis of the structure of the steady wave.

Though gas phase end state analysis has been performed by many others, it is believed
I that the work here clarifies this analysis by finding simple analogies between one-phase CJ

conditions and two-phase CJ conditions along with simple corrections for non-ideal gas
I phase effects. These simple two-phase conditions are analogous to, but not identical to, the

one-phase CJ condition and cannot be obtained a priori from the one-phase model. The3 similarity in results is due to the similarities which exist between the one-phase
conservation equations and two-phase conservation equations. The common notion that
one-phase CJ results can be directly applied to two-phase systems is disproved by this

work.
The variation of CJ properties with initial bulk density reported here accurately

matches the TIGER predictions for a single set of gas phase state parameters. Thus it is not
necessary to vary the gas phase state equation parameters as initial bulk density changes to

Smatch the TIGER predictions as done by other researchers. In Ref. 47 a virial equation of
state identical in form to the gas state equation of this study was used. In that study as the3 initial bulk density varied, the value of b was varied within the range from 0.00361 m3/kg
to 0.00486 m3/kg in order to match the TIGER predictions. As shown in Figure 5.3 of the
present study the CJ properties are very sensitive to changes in b on the order of those

studied in Ref. 47. In Ref. 2 a JWL gas state equation is used, and it is reported that CJ
data is adequately reproduced when the constants are allowed to vary with the initial bulk
density. It is believed that the approach of the present study in determining CJ properties
has the advantage over the approach taken in Refs. 47 and 2. Though all the studies fix gas

Sstate equation parameters so that CJ predictions or data is matched, a single set of
parameters is used only in the present study.3 An analysis of the structure of a two-phase detonation wave has further restricted the
class of available steady solutions. The structure analysis has shown that below a critical
initial bulk density no steady solution can exist when the solid particles reach a sonic state.

The mathematical consequence of this is that the solution is becomes a double-valued
function of distance, a physically unacceptable result. This particular result and the general3 technique of using structure analysis to limit the available solutions is new to two-phase

detonation theory.I
I
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I As a result of this study it is possible to predict the features of a steady two-phase

detonation structure. It has been shown that when a leading shock wave exists in the gas3 phase and the solid is unshocked, that two-phase equivalents to the one-phase ZND strong

and CJ solutions are predicted. As in ZND theory, the two-phase theory predicts that3 piston support is required for the strong solution to exist, and that a two-phase CJ

detonation can propagate with or without piston support. It has also been shown that when

both the gas and solid phases are unshocked, that the model equations yield two-phase

equivalents of weak and CJ solutions. These types of solutions are also found using the

simple one-phase ZND theory but are commonly dismissed because it is thought there is no

mechanism to initiate reaction. The model yields such solutions because the functional

form of the combustion model allows a small amount of reaction to occur even at ambient3 conditions. The model allows the small heat released by the reaction to accumulate and

cause a thermal explosion after an induction time.3 This work has clarified the role of shock jumps in two-phase detonation theory. No
previous work on two-phase detonation theory has considered the four possible states

admitted by the shock jump conditions. This study has shown that two-phase detonation

structure is possible when the gas phase is shocked or unshocked and the solid is
unshocked. The possibility of a two-phase detonation with a shocked solid has not been£t ruled out; an example of such a detonation has not been found yet. This study does not

consider how the structure of an unshocked solid and shocked gas can arise. To show
how this could occur would require an unsteady analysis which is beyond the scope of this

study.

To speculate on how such a scenario could develop, on could imagine a slow,

unconfined burning of reactive particles. If the system were suddenly confined, a local

region of high gas pressure could develop which could give rise to a propagating shock

wave in the gas but not the solid. It should also be said that the idea of shocked gas and
unshocked solid is common in the literature of shock waves in dusty gases. A standard3 assumption is that there is a shock wave in the gas but that the solid particles are
incompressible, thus unshocked. Rudinger [64] provides an example of su,., a model.3 This study has for the first time unambiguously identified a finite-valued gas and solid

complete reaction end state. Though others have discussed the gas phase complete reaction

end state, the solid end state has never been considered. In each of the physical detonation

solutions presented here the final values of both the solid and gas can be precisely stated.

In all cases, the complete reaction end state analysis allows the final gas phase properties to

be determined. For the two-equation model, the final solid properties can be determined by

an algebraic analysis without regard to the detonation structure.I
I
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3 The complete reaction singularity which exists due to the 1/r terms in the governing

equations leads one to question whether unbounded properties are predicted at complete3 reaction. Previous studies have neglected this question. Here it has been shown that a

two-phase detonation can be predicted when p:oper account is taken for the complete

reaction singularity.

This study has also identified for the first time the importance of sonic singularities in

two-phase detonation systems. It has been shown that in general if a sonic condition is

reached in the solid phase, that double-valued properties are predicted, and that if a sonic

condition is reached in the gas phase at a point of incomplete reaction, that imaginary gas
phase properties are predicted. The sonic conditions are particular for each phase and have

no relation to the mixture sound speed.3 Techniques which are new in the two-phase detonation modeling field have been used

to simplify the governing equations. An algebraic method for uncoupling the mixture

mass, momentum, and energy equations to solve for gas phase variables in terms of solid

phase variables has been developed. It has been shown that the equations can be reduced
to a set of four uncoupled ordinary differential equations in four unknowns and how in the

limit of zero heat transfer and compaction these equations reduce to two ordinary

differential equations. The two-equation model makes it possible to exploit the simple two-

dimensional phase plane to gain understanding of the complete model. Similarity of the

results of the two and four equation models suggests that heat transfer and compaction are

not important mechanisms in determining two-phase detonation structure.

Much work remains to be done in two-phase detonation theory. It is highly likely that

other classes of steady detonations can be predicted which have not been studied here. The

complexity of the model equations makes this search a trial and error process. However,

one can envision several different detonation scenarios by making minor adjustments in the3 relative positions of the separatrices in the two-dimensional phase plane.

Two-phase steady detonation results can be effectively used in the unsteady two-phase3 DDT problem. Predictions of any unsteady model would be strengthened by comparing

them to the predictions of a steady model. Unsteady model results can be used to verify

that the unsupported two-phase detonation wave is a CJ wave. This would simply require

an examination of the two-phase end state conditions.

Reaction zone lengths predicted by the steady model must match those predicted by the

unsteady model. This however raises an important question regarding numerical
resolution. This study predicts reaction zone lengths of the order of 10 mm. Unsteady3 two-phase models now use a cell size on the order of 1 mm. It is highly unlikely that with

the ratio of cell size to reaction zone length so high that one could use unsteady results toI
I



I87

3 distinguish features of the reaction zone identified by steady analysis, in particular, shock
waves. The results are smeared by artificial viscosity and lack of an adequate number of

I cells. Thus the results of this study suggest that a cell size on the order of 0.01-0.1 mm be

employed in unsteady calculations. Cell sizes of this magnitude present a dilemma.
Typical particle sizes for detonation applications range from 0.1-1 mm. One assumption of

continuum modeling of granular materials is a large number of particles exist in any
averaging volume. If cell sizes of the order of 0.01-0.1 mm are employed, as the results

I suggest is necessary, then the continuum assumptions may not be valid.
The results of two-phase steady theory can be used as the basis for further studies. At

this time, the stability of two-phase detonations has yet to be investigated. Also
multidimensional two-phase theory is undeveloped. It may be possible to obtain a
relationship to determine the critical diameter of a cylinder containing a two-phase explosive

much in the same way these relations have been developed for one-phase materials [65].
Finally, it should be possible to use the method of characteristics to study the unsteady
two-phase problem in a new way which has the potential to provide more understanding of
what processes actually cause a two-phase detonation.I
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I APPENDIX A. CHARACTERISTIC FORM OF GOVERNING EQUATIONS

I
This appendix will identify the characteristic directions and characteristic form of

Equations (3.1-15). First a simplified, compact form of Equations (3.1-15) is presented.
This form is useful when deriving the characteristic form of the equations. Because

Equations (3.1-15) are hyperbolic, it is guaranteed that these equations are well-posed for
initial value problems. If these equations were not well-posed, any solution to the initial
value problem would be unstable. This analysis is very similar to the analysis performed

by Baer and Nunziato [2] for their two-phase model equations. Here the same
characteristic eigenvalues are obtained.

Though the characteristic form is not immediately relevant to the work presented in this
thesis, it could be important for future work in the unsteady DDT problem. The1 characteristic form is in some sense the natural frame in which to study the unsteady
equations. The unsteady equations are transformed from a set of partial differential

equations to a set of ordinary differential equations. Previous studies of the unsteady
problem have uscd the method of lines to solve the equations (see Ref. 47). With this

method both time and space derivatives are discretized. Also to describe shock waves, it is

necessary to use a special technique, such as artificial viscosity or flux-corrected-transport
(FCT) to spread the shock jump over a few finite difference cells. When the characteristic

form of the equations is studied, no shock-smearing method is required to describe shock

jumps.3 This analysis will follow the technique described by Whittam [66] for determining the
characteristic eigenvalues and eigenvectors. Consider a system of partial differential

equations of the form

au. au.
AI + Bij-L = C. (A.I)

3 Multiply both sides of Equation (A.1) by a vector li.

I au. au."I A _ +IB x = 1. C. (A.2)I

I
I



I
I The vector 1i is chosen such that Equation (A.2) can be transformed into a system of

ordinary differential equations. To insure that Equation (A.2) can be transformed to such a

system, it is sufficient to require that the following condition hold.

I 1.B.. = Xl.A.. (A.3)

I where X is a variable scalar quantity. If Equation (A.3) holds, then Equation (A.2) can be

i written as

(au. auj .
IA L ) i i(A.4)

I Equation (A.4) can be transformed to an ordinary differential equation on special

curves in the x-t plane. On curves specified byI
dx
T--= X (A.5)

Equation (A.4) becomes

du.
L.A.. -- I = 1.C. (A.6)
1 Ijdt I I

I To get the form of Equation (A.6) it is required that the eigenvalue problem specified by

Equation (A.3) holds, that is

Ui i( XA B~~ 0 (A.7)

5For a non-trivial solution to this equation to exist it is necessary that

3 det(XAj Bij) = 0 (A.8)

I

I
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Solution of Equation (A.8) will provide a set of eigenvalues X. For each eigenvalue, it
is then possible to use Equation (A.7) to determine the vector li. This vector will have an

arbitrary magnitude. Using this vector for the particular eigenvalue, equation (A.6) can be

used to determine the characteristic ordinary differential equation for the characteristic
direction of interest. When substituted into Equation (A.6) the arbitrary magnitude appears

as a factor on both sides of the equation and cancels.

To study the characteristic form of Equations (3.1-15), it is first important to write3 these equations in the reduced form required by Equation (A. 1). To achieve this form,

several steps are necessary. First, the gas and solid mass equations are used to eliminate

I density derivatives in gas and solid momentum and energy equations. Next, the reduced

gas and solid momentum equations are used to eliminate velocity derivatives in the gas and
solid energy equations. Then the gas and solid Gibbs equations are used in the gas and

solid energy equations to rewrite derivatives of gas and solid energy in terms of derivatives

of gas and solid entropy and density. Finally, thermodynamic relations developed in

Appendix B are used in the gas and solid momentum equations to rewrite derivatives of gas
and solid pressure in terms of derivatives of gas and solid entropy and density.3 With these steps and adopting Equation (3.16) in favor of the number conservation

equation (3.7), the unsteady two-phase equations can be written compactly as followsI
P3i + Pi i" + j (A.9)

P i at'+ i a t + +a x +  Pi-' ax &1 1=

au. au. 2a i -1iPi~iat, + PPOiuI+. 1 p 8) p

r Sy [d p 2 (u 2 2  +l (u 2 -u) ]

as.as o ijo t- + pA,3Tu --- P --- P~u.- ax

1 c 2-i- (u2 -ui)_ /P 1)C(u2 u2 )+7t 341 (n .T~ /
I (A. 11)I

I
I
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i"-+ u2"Jx r IC 9 r o S 5f0) A 2

3 r 3 ar 1 aP 2  I 7r4 (A.13)--- + 2 --- +-- u2 -ax II rt+r 2 f2

wih gasphase i= 1 8=
with solidphase i = 2 8 -II

Equation (A.9) represents the gas and solid mass equations; Equation (A.10)
represents the gas and solid momentum equations; Equation (A. 11) represents the gas and

solid energy equations; Equation (A. 12) is the compaction equation; and Equation (A. 13)
represents a combination of the number conservation equation and solid mass equation.

The algebraic details required to derive the characteristic equations are very lengthy and
not immediately relevant to this work. For this reason, only the results will be presented
here. Six characteristic eigenvalues X are found

I ~Ua+cl

U 1~ 1

u2 2+ c2

X Ul (A. 14)

I U2

* The characteristics are real and analogous to the characteristics found for one-phase

equations.

The characteristic equations have been determined in the limit when the gas phase is
ideal. There is nothing in principle preventing the characteristic equations from being
determined for a non-ideal gas; however, the algebraic details are much more complicated.
The characteristic directions given by Equation (A. 14) apply to both ideal and non-ideal gas
phase state equations, and the non-ideal solid assumption has not been relaxed in any3 calculations. Let y1 = 'C7 and y2 = 717. The equations in characteristic form in the ideal gas

limit areI
I
I
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d (Po,) 1 du.

+ - I-
liic2 dtL c, dt ,

1 4 7r1 Pp P 4 (u -u ) + 7 2 1( -11

I Iri2 i

m+ 2 7C 2 9 (A. 15)

P2 2

IIdsi P. 1 do,3' I.... -y1).. 1 _yi dti0  i-Pi 2 0 tio -

+8 -ei-u - (U2-U )(U2 -Ui)+(tT 2 -T1)r2/3}

1pO 1 (e2  1i+ 2  2 i i )+it2 01,i d u-i) 73IIr
r(A. 16)

I do PP
4

1 d- 2 = 9 1 - - 150 (A.17)

S2 dt2O II
3 dr 1 dp 2  'C4

dt2  P dt0  P (A.18)

where the derivatives are defined as follows

d a a d a +

dt- +(U -at + Ui

I
These definitions lead to the following differential equations defining the characteristic

Idirections

I
I
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II- u. ± c. on i± characteristicsdt

dxI
T= u on iO characteristics

I It should be noted that Equations (A. 15-16) reduce to familiar one-phase formulae

given by Courant and Fredrichs [67] in the one-phase inert limit.

I
I
I
I
II

I
I
I
I
I
I
I
I
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3 APPENDIX B. THERMODYNAMIC RELATIONS

U In this appendix, it will be shown how, given a thermal equation of state for pressure

as a function of density and temperature, one can derive a thermodynamically consistent

caloric equation for internal energy as a function of density and temperature. This
technique will be applied to the virial gas state equation and solid Tait equation. Equations3 for sound speed and partial derivative of pressure with respect to entropy at constant
density are derived for each phase. The analysis that will follow is well-known in classical3 thermodynamics and can be found in most thermodynamics textbooks.

3 General Analysis

For this analysis let the specific volume v be defined as v = 1/p. The task is to derive

a caloric state equation [e = e(T,v)] given a thermal state equation [P = P(T,v)]. If energy
is to be a function of temperature and volume, then the differential of energy can be written

3 as follows:

de = TI dT +Dv I Tdv (B.1)

U The Gibbs equation, Tds = de + Pdv, can be used to write an expression for the partial3 derivative of energy with respect to volume:

=T TVasI -P (B.2)

3 The specific heat at constant volume is defined as

c= -a (B. 3)

N Equations (B.2) and (B.3) are then substituted into Equation (B. 1) to yield the following:

I
I
I
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IT de =cVdT + (T IT T" P dv (B.4)

Using the Maxwell relation

U =asT (B.5)I
in Equation (B.4) the following equation is obtained for the differential of energy:

api
de = cvdT +kTg ) dv (B.6)

Iwhich is a convenient formula for determining a caloric equation given a thermal equation

of state.

Gas Phase Analysis

It is assumed that the gas thermal equation of state is given by

3 R I .(+ b/v) (B.7)
1

By substituting Equation (B.7) into Equation (B.6), the following equation is obtained for
the differential of gas internal energy

I de1 = cV1 dT1  (B.8)

U By making the assumption of a constant specific heat at constant volume, integrating

Equation (B.8), and setting the arbitrary integration constant to zero, the following formula

is obtained for the gas internal energy:

U e1 = cv1 T1  (B.9)

I
I
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Internal energy can be written in terms of pressure and density by substituting Equation

(B.7) into Equation (B.9) and using the definition of specific volume.

el Cv P1
=V 1 (B.10)1 R p1(1 +bp 1)

The Gibbs equation, Tlds1 = de1 - P1/pl2 dpl, can be used with Equation (B.10) to

3determine an expression for sound speed ct , defined below:

2 (B.11)

Up I

By using Equation (B.10) to determine the differential of energy in terms of pressure and

3density and substituting this res-ilt into the Gibbs equation, the following expression is

obtained:I
TldS C1 = _ __1 cvl P, (I + 2bp1) PI

1 ptds + P 1 1 dp  - dp  (B. 12)
'R P(1 +bp) R P 2(1 +bp )2  p12

I By holding entropy constant (ds t = 0), and using Equation (B.7) to reintroduce

temperature, Equation (B. 12) can be used to determine an expression for gas phase sound

3speed:

C 2 = RT [1 + 2bp, + (R/cvl)(1 + bpt)2 (B.13)

IIt is easily verified by setting b = 0 that Equation (B.12) reduces to the well-known ideal

gas sound speed.

Solid Phase Analysis

I For the solid phase the assumed thermal state equation is

I
U
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S= ('2 l)Cv2T 2  20 (B.14)

Sv 2 2

U By substituting Equation (B. 14) into Equation (B.6), the following expression is obtained

for the differential of solid energy:

I
de2 = cv2dT 2 +1 20 dv2 (B.15)

I By assuming a constant specific heat at constant volume, integrating Equation (B. 15) and

assuming the arbitrary integration constant is the chemical energy q, the following equation

is obtained:

e2 = Cv2T2 + '20 v2 +q (B.16)
Y2

Using the thermal state equation (B. 14) and the definition of specific volume, Equation

(B. 16) can be rewritten to give internal energy as a function of density and pressure.

1 P2 + P20s

e2 = + q (B.17)
(7- 1)P

2 2

3 As for the gas phase, the sound speed for the Tait solid may be determined by

considering the Gibbs equation. The Gibbs equation for the Tait solid in terms of

3 differential pressure and density, obtained from differentiating Equation (B. 17), is

Tds = 1 dP2 - P20p p2  (B. 18)

Td2-(Y2"1 P2 (,y2 1) p2 P 2
2 2 2  d2 - d

! ~ 2  ~ -lp p

I
I
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By setting the entropy change to 0 in Equation (B.18), solving for the derivative

representing sound speed, and using the thermal state equation (B. 14) to reintroduce

i temperature, the following formula for the sound speed of a Tait solid is obtained:

2 = 22 v2T2 (B. 19)

3 Equation (B. 19) is identical to the formula one finds for the sound speed of an ideal gas;

when the sound speed is expressed as a function of pressure and density, there is a non-

i ideal term present.

i
I

I
i
U
I
I
I
1
I
I
I
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I APPENDIX C. MODEL COMPARISONS: MOMENTUM AND ENERGY

EQUATIONS

In this appendix, the momentum and energy equations of this work are compared to
those of Baer and Nunziato [2]. The differences lie in the particular form of the pressure

gradient term in the momentum equations and in a term known as compaction work in the

energy equations.

Momentum Equations

3 The formulation of the momentum equations used in this work, adopted from the work
of Butler and Krier [1], has been criticized because it fails to describe the equilibrium
configuration of solid particles at rest in a less dense fluid in the presence of a gravity field.
This is not in dispute. It has been argued that the two-phase equations as formulated by
Baer and Nunziato are able to describe such a situation and thus are to be preferred to the

Butler-Krier equations. Here, it is shown that both formulations are in general unable to
predict the equilibrium situation described above.

The problem is sketched below in Figure C. 1.

I

I g

Figure C. 1. Sketch of vertical settling problem

This sketch shows a mixture of a fluid and solid particles at rest in a tube. Here a
gravitational acceleration, g, has caused the heavier solid particles to settle to the bottom of

the tube.

I
I
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I Consider the following two-phase model equations, which are inclusive of both the
Nunziato-Baer and Butler-Krier formulations.

+ P, I_ a 2 122

aul ul ap a

2 2 -(, 1 8(u -u)-Pg (C.2)

3 2 + a2 " +102P  " (C.3)

bu2  au 2  a_ (2)

iC

U Here the subscript "1" represents the fluid phase and the subscript "2" represents the

solid phase. Equations (C.1) and (C.2) are the momentum equations for the fluid and solid

phases, respectively. Equation (C.3) is the dynamic compaction equation. Density is
represented by p, volume fraction by 0, velocity by u, pressure by P, drag coefficient by 8,

gravitational acceleration by g, compaction viscosity by gt,, and static pore collapse
function by f, assumed to be a function of only the solid volume fraction, 02. For C = 0

these equations describe the Nunziato-Baer formulation, for K: = 1, the Butler-Krier

formulation.

The following equations partially describe the initial state in the vertical settling

problem:

I 2 (x,O) = h(x) (C.4)

u I (X,0) = u2 (x,0) = 0 (C.5)

Here, it is assumed that there is an initial distribution of particles given by a general
function h(x). It is further assumed that both particles and fluid are at rest.

It would seem that a basic test for any model of this problem is that the model should

predict that the nixture stays at rest; thus at this initial state, the equations should predict

that no variables change with respect to time. To insure that no volume changes are3 predicted, a condition on the relation between P2, P1 and k is obtained from Equation

(C.3):I
I
I
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3 P2 = P 1 + f[h(x)] (C.6)

An equilibrium condition is also obtained from the fluid momentum equation (C. I) by

using the initial conditions (C.4, 5). For no fluid motion to be predicted, the following

condition must hold:

S= j-'"-pg 
(C.7)

For Kc = 0, a result identical from one-phase fluid statics is recovered. It has been

argued [68] that this limit must also be recovered from a two-phase model and that this is a
sufficient reason to take Kc = 0. However, it is still not clear whether this familiar result

should extend to the two-phase situation.
When the solid momentum equation (C.2) is considered, it is seen that both3 formulations have difficulty describing an equilibrium configuration. By substituting the

initial conditions (C.4, 5), the compaction equation condition (C.6), and the fluid pressure
gradient condition (C.7) into Equation (C.2), the following condition is obtained for no

solid acceleration:

H (P 1 /P2 -X) g 1...L/ dhf(h(x))] P1 1 (C.8)
p h px 2 h 1-h dx

This equation raises questions regarding equilibrium in the presence of gravitational

forces and initial volume fraction gradients.. Consider two limiting cases for the Nunziato-
Baer model (Kc = 0). In the first case consider a situation in which there is no intragranular

stress; the particles are in contact but are not exerting a force on each other. This would

correspond to the condition f = 0. In this limit, equation (C.8) predicts equilibrium only
when the fluid density is equal to the solid density, which in general is not satisfied. (In

this case it is questionable whether the state equations would allow Equation (C.6) to hold3 also.) In the second case consider the zero-gravity limit, g - 0. In this limit for Equation

(C.8) to be satisfied, the static pore collapse function f must be of the form f = constant /
02, a condition which is not enforced by the Nunziato-Baer model. The condition (C.8)

I
I
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I has not been enforced by the Butler-Krier model. It should be said that the Butler-Krier
model never attempts to describe the situation in Figure C. 1.

From this analysis, it is clear that both the Nunziato-Baer and Butler-Krier model
equations are incapable of describing an equilibrium state in the presence of either a volume3 fraction gradient or gravity forces unless very restrictive conditions are placed on the

constitutive relations. Neither of these models currendy enforces such restrictions.

I Energy Equations

Baer and Nunziato have included a term in their model which is intended to model
experimentally-observed hot spots in granular explosives and the work associated with the
local distortion of grains when a granular material is compacted. This term, called
compaction work, appears in both the solid and gas phase energy equations. It is
constructed such that when compaction work is predicted, energy is removed from the

solid phase and deposited in the gas phase. This local energy deposition gives rise to a

local hot spot which encourages a local acceleration of the reaction rate. It is shown by

Baer and Nunziato that this compaction work term is consistent with but not required by the
second law of thermodynamics.3 Here, it will be shown that the presence of compaction work gives rise to a

fundamental inconsistency in the limit of an inert mixture where the ratio of initial gas3 density to initial solid density is small. In this limit the steady-state mixture energy
equation predicts a result inconsistent with the solid energy equation. It is shown that the
solid energy equation in this limit gives rise to energy escaping from the system.

Consider the following equations, general equations which encompass the gas and
solid energy equations of both models.

3 t  fl l e l+ul t2)J +1( e [ 2/ulel+ul/ 2 +P10uuJ " Pl u "l

2 002

I -h(T T ) + cc(u2 -ul)u2 - C(e 2 +uz2) + 6!.(P 2 -P1 -f(02))(P 2 -f(0)2
)  (C.9)I
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I + [e 2  )+P . + 8P ,u

h(T 1- 2 - (u2 -u )u2 + c~e +u~t) _ &!.z(P 2 Pf())(P 2 f(02)) (C.10)

O Model of this Work

I = Baer-Nunziato Model

I The new notation introduced here is that h is considered to be a general function
specifying the heat transfer coefficient, likewise a is taken to be a general function

specifying the drag coefficient, and c, + is a general function specifying the combustion rate.
The parameter 8 is used to distinguish the two model formulations.

When Equations (C. 10) and (C. 11) are added, a homogeneous, unsteady mixture

energy equation is obtained.I

(e +u2t P1~u +P P 2 e2+u) P2 u] 0 (C. 11)

It is argued by Baer [45] that in the limit where material is inert (c,+ = 0) and where the

effect of the gas phase is negligible that Equation (C. 10) reduces to the following

+u e2 -! P24402))

3 I o (o411+u2)] +.4ax P202u2(e2u )+P202u2] 9. l 2f )2Jc

(C.12)

If Equations (C. 11) and (C.12) are transformed to steady dimensionless form and the limit
I of zero gas phase density is taken, the inconsistency becomes apparent. Using the same

technique and nomenclature found in the main text for writing steady dimensionless
equations, it is found that Equation (C. 11) transforms to the following (equivalent to

Equation (5.7))

I
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7 5PllVl el +  + + P 2  (e+i+ = 1 v2

3 6 511(6V14+ 1/2+i:19) + (1-7t1 1 )(, 14 +C 8 +C10 + 1/2+ E21 (C.13)

In the limit of zero gas phase density, 715 is zero. Thus in this limit the steady mixture

equation (C. 13) becomes

P2 2 (e2 +T+ 2  = (I - 7C t14 + X8 + +1/2 + 721 (C. 14)

I The steady dimensionless form of Equation (C.12) is

i[ P2 2v(e 2  + P20,2v 2  = 9 , (C. 15)

It is obvious that Equations (C.14) and (C.15) are consistent only when 5 = 0, that is when

compaction work is ignored.

Inclusion of compaction work leads to violation of the conservation of energy in the

zero-density gas phase limit. This is easily seen by considering the application of the
unsteady energy equation (C.12) to the following problem (see Fig. C.2). Strike with a

piston a constant area tube closed at one end containing a porous material. After a period of

time bring the piston to rest. The piston motion induces a pressure imbalance in the porous

I material (i. e. (P - f) > 0). After the piston is brought to rest, a zero velocity boundary

condition must be enforced at both ends of the tube. However the material inside the tube

3 is not in a state of equilibrium.

I
I
I
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I P-f>O u=O

I__

x=O x=L

Figure C.2 Sketch of Piston ProblemI
By integrating the energy equation (C.12) from x =0 to x = L, it is seen that for 8 =0, the3 energy of the system is conserved and for 8 = 1, energy leaves the system as time

progresses. The time rate of change of energy per unit cross-sectional area for this system

* is

L L

+( 2 ) = - f( 2 ))2 dx (C.16)

0 RC 0

For 0 < O2 < 1, the integrand of the right hand side of the total energy equation is always

positive; therefore, for 8 = 1, energy leaves this system, and for 8 = 0, energy is3 conserved. In order to preserve energy conservation in this limit, and in light of the fact

that compaction work is not necessarily required by the second law of thermodynamics,

compaction work is not included in this model.

It is concluded that though it may be important to model hot spot formation, the

proposed mechanism of compaction work has an inherent flaw, and in order to model such

phenomena another model must be proposed. To model hot spots in a granular material

which arise from the material compaction is difficult in the context of a two-phase mixture

model. One would need to devise a way to non-uniformly distribute the energy introduced
to the system by the piston (P dV work) to the particles. The non-uniform distribution

would allow some particles to have higher temperatures than others, thus giving rise to

local "hot spots." It is unclear how this can be achieved with a two-phase mixture model3 which relies on averaged properties. In fact one of the strengths of two-phase modeling is

that details of microstructure do not need to be considered as these local variations are

eliminated in the averaging process. For this reason, it may be impossible to attempt to

describe hot spots with a two-phase mixture model.

I
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APPENDIX D. TWO-PHASE CJ DEFLAGRATIONS

m It is possible in principle to use the two-phase model to study two-phase deflagrations,
reactive waves which travel much slower than detonations and which have a much lower
pressure, temperature, and density rise. Because of the more moderate changes in the state

of the gas, the ideal gas state equation is appropriate for use in studying two-phase

deflagrations. Understanding of two-phase deflagrations can be gained by studying the
complete reaction two-phase Rayleigh line and Hugoniot equations (5.21, 22) in the P1-

1/p1 plane (see Fig. D.1).

o1 * TWO-PHASE HUGONIOT

I
WEAK SOLUTION (SUBSONIC)

STRONG SOLUTION (SUPERSONIC)
I .,Cj SOLTO

m TWO-PHASE RAYLEIGH LINE

I Figure D. 1 Two-Phase Complete Reaction Deflagration Rayleigh Line and Hugoniot

m Deflagration solutions are found at the intersection of these two curves at gas pressures
lower than the initial apparent pressure Pa and gas densities lower than the initial apparent

density Pa" It is possible to predict a maximum deflagration wave speed, called here the CJ

deflagration speed. At the CJ deflagration state, the two-phase Rayleigh line is tangent to
the two-phase Hugoniot. For wave speeds greater than the CJ deflagration speed, but less

than the CJ detonation speed, there is no intersection of the two-phase Rayleigh line and
Hugoniot and thus no solution. For wave speeds less than the CJ deflagration speed two

solutions are obtained, a strong and weak deflagration solution.
For an ideal gas the complete reaction CJ wave speed is given exactly by the following

m equation using the nomenclature of Chapter 5.

I
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I
Da = PR2(2c R) Re - c P ± 2c+Rfe2R(2Cv+R) a a2 pav~ 2pRP.

E1C = V1 a v1pa/Pa ~V 'a 2(2 a a p )c i

Cvl (D.1)

I Here the plus branch of this equation corresponds to the CJ detonation state and the

minus branch corresponds to the CJ deflagration state. When Pa/(paea) << 1, the CJ

deflagration state simplifies considerably. In this limit, which is relevant for many physical

systems including the HMX system studied in this thesis, the CJ deflagration state is

approximated by the following equations.

Dr1 7 2 e (D.2
Da 2(n 2 - 1) paaD

P 7 + P  (D.3)

a

i CJ 2(i 7 -1) Pa (D.4)

Ta 2 a (D.5)
TO 7(27 + 1) Cv

ec 2 a (D.6)7x7(x7 + 1)

= _ /2(t7 - 1)

v Cj a- i"7 ea (D.7)

I
It is important to stress that beyond describing the maximum speed two-phase

deflagration wave the interpretation of Equations (D.2-5) is unclear. At this point it is not

known whether a steady two-phase deflagration structure can be predicted by the model

equations (5.1-15) and if such a structure could be predicted, what conditions would dictate

whether a CJ, strong, or weak deflagration was obtained. A limited study was undertaken

I
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I to find steady deflagration structure with no success. This study included CJ deflagrations

along with strong and weak deflagrations. Kuo and Summerfield have found steady two-

phase deflagration structure using a similar model [37]. Also both the Kuo and

Summerfield model and the model of this work have neglected diffusive processes such as

heat conduction and viscous momentum transport which may be very important for the

relatively slow deflagration waves.

I
I
I
I
I
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I APPENDIX E. DERIVATION OF UNCOUPLED EQUATIONS

I
This appendix will provide a detailed explanation of how the coupled set of

differential-algebraic equations describing steady detonation structure (5.1-15) can be

written as four differential equations in four unknowns and how in the zero heat transfer,

zero compaction limits these equations can be further reduced to form the two-equation

model (5.45-46). First, it will be shown how through an algebraic analysis the mixture

equations (5.5-7) can be used to write gas phase quantities in terms of solid phase

quantities. It is found that this process involves the solution of a cubic equation. Next the

coupled differential equations (5.1-4) are uncoupled using linear algebra techniques. It is

then shown how these equations reduce to the two-equation model.

The mixture equations (5.5-7), solid and gas caloric state equations (5.13, 10), and3 porosity definition (5.15) are rewritten here

P I1 v l  2 4'P 2 2 18 (E. 1)

P1 v + 2 + =1 23 (E.2)
5

v2 v 2  .P2
]je +! P20v2 e2 2 '22 (E.3)

P2+X17c8

e 2 = 17 8 +70 (E.4)
(n17- 1)P2

e1 = I (E.5)
(7 " 1) PI (I + C1 3Pl)

* + 02 = 1 (E.6)

By using Equations (E.4) and (E.5) to eliminate gas and solid energy in Equation

(E.3) and Equation (E.6) to eliminate gas volume fraction in Equations (E. 1-3), Equations

(E. 1-3) can be rewritten as follows

I
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I PVl = A(P2 , O2,, P2 ) (E.7)

2v + B(-P2 ' 2' T (E.8)

P ( I +I+2 P 2' 2' T2 (E.9)
PiI, (7- )P1)(+ IC 1 3 P ) ) 1 P 4 , 2

3 where A, B, C, and D are functions of solid density, volume fraction, velocity, and

pressure defined below

I 1/ \~ ~ " 18- -' 22 v2

AP 2' 02' v2' P2) 5 (E.10)

* 1-02

t'\ 18+ I23 I 022v 2 + P202

I B(P 2 , 2', v2, P2) = P28(E 11)

21
S -22-- 2 ( 17 )  +  +

2
+ P

l2 2 ' 2' 2 22X520 N 17 2  1 2 J (E.11)

3 Equations (E.7-9) can be combined to form a cubic equation for gas density. This is
done by first using Equation (E.7) to express gas velocity as a function of gas density and3 solid variables. Then gas velocity may be eliminated from Equations (E.8) and (E.9).
Thus modified, Equation (E.8) can be used to express gas pressure as a function of gas

density and solid variables. This result is used to eliminate gas pressure from the modified

energy equation (E.9). The resulting equation is a cubic equation for gas density whose
coefficients are functions of the solid phase density, volume fraction, velocity, and

1pressure.
I
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i [-2(t 7 - 1)7r13C] P + [2(t 7 - 1)(ABit1 3 - C)] 2 +

I 2ABi. -n i 7 - 1)A 3n 13] P - [(7C7 + 1)A 3] = 0 (E. 12)

I Equation (E. 12) can be solved exactly for gas density in terms of solid phase variables

and parameters. The solution is very lengthy and can be easily produced using the formula

for solution to the general cubic equation. Three roots are found for Equation (E.12). One

is associated with a shocked gas and is analogous to the strong branch of the ZND

solution. Another is associated with an unshocked gas and is analogous to the weak

branch of the ZND solution. The third predicts a negative density for all cases studied and

is rejected as unphysical. This root is not present when non-ideal gas effects are absent.

(It is seen from Equation (E. 12) that for no non-ideal effects, 7C13 = 0, that the equation is

quadratic, and only two roots are present.) It is possible for Equation (E.12) to predict a

pair of imaginary roots under certain conditions. If such a condition was reached, the

detonation structure must be rejected as unphysical. In addition to solving for the gas

phase variables within the reaction zone, Equation (E. 12) is used to determine the shock

state of the gas.
With the gas density predicted from Equation (E. 12) as a function of solid phase

variables, all other gas phase variables can be expressed as functions of solid phase

variables. The gas velocity is found by using Equation (E.7). The gas pressure can then

be determined from Equation (E.8) and the energy from the state equation (E.5). The gas

temperature and sound speed can then be found using Equations (5.9,11).

In the numerical code which predictz reaction zone structure, Equation (E. 12) was

solved using the IMSL subroutine ZRPOLY. Though one could use the exact cubic

solution to determine the gas density, the numerical accuracy of the solution is higher when

ZRPOLY is used. Given a general polynomial equation, the subroutine ZRPOLY

3 determines all roots, real and complex.

Equations 5.1-4 can be expressed in the form

I du.
A....-I = B. (E.13)

where uj = (P2, 02, v2, P2) and Aij and Bi are functions of P2, 41, v2, and P2. To put the

equations in a form suitable for phase space analysis, explicit expressions for the

I
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I deri\ atives du/dt must be obtained. This is done by multiplying both sides of Equation

(E.13) by the inverse of Aij.

du.I= A' B.

One necessary step to express Equations (5.1-4) in this form is to use the solid caloric

state equation (5.13) to determine an expression of the derivative of solid energy in terms

of solid pressure and density. This derivative is given below:

de2  1 dP2  P2 + 7t 17 8 dp2--.-. -(E.14)
d4 (t- 1 t 7c )p2 dt1 (t7 ) 2 d (17- 1 2

Expanding the derivatives in Equations (5.1-4) and using Equation (E. 14) allows a

system in the form of Equation (E. 13) to be written.

*dp 2

222 v2  -2 v2  2222 0 dt 4

P P2 2  P2172 2 d2 -7C2(v2-v1)002 / r

1 2  0 P2 dv2  -3(6T2-T1 1/3

0 17-)P2 ( C 17-1) dt

0 v2  0 0 dP2  -9olo2(P2"5P1 - 1502 ) - "102 p  Ir.

I
I (E. 15)

3 The left side of Equation (E. 15) is expressed in terms of the fundamental variables P2, 02,

v2, and P2 . The right hand side can also be expressed in terms of these variables. The3 method described earlier in this appendix can be used to write the gas phase variables v1 ,

PI, and T1 as functions of the fundamental variables. The number conservation equation

I
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(5.8) and solid thermal state equation (5.12) can be used to express the radius r and solid
temperature T2 as a functions of the fundamental variables.

By multiplying both sides of Equation (E.15) by Ajj-1, explicit expressions can be

obtained for the derivatives of the fundamental variables.

I2
-a 2=DR7- P2 1-1 J2 (E. 16)

d4 
2  _C P2 +2 "

5 
1 

2 

(E714

" p2v. [.25 - P25021 (E. 17)

2"9 v2  1v 2r

+ 17 - 8 22 2 ]

dv2  (I17 -)p2  J I C17 - (E.18)

7 1 P2/

dP2  D 4- 17 - v2 P2v2 + 7117-8 v21 + 2 2Ud O v2 V-It P2 + It8 ] (.92 17 1

IC17 " 1 2

3 where D, E, and F are defined as follows

3 D= it9p2 (P 2 - r5PI- "150 2) (E.20)

P2 (E.21)E=-x 2(v 2 - Vl- )r+ v2 R 1 1 - 7C90(P2 - 5P1 "1502)(.1

!2
I
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F = - 3 T2 - TI) (E.22)

I
Equations (E.16, 18, 19) are singular when the following condition is met

I 2 P2 + 78

v2 = X 17 P2 (E.23)

By using the solid thermal state equation (5.12) to eliminate solid pressure and density

in favor of solid temperature and using the solid sound speed definition (5.14) it is seen

3 that Equation (E.23) can be rewritten as

2 2

v 2 =2 (E.24)

Thus when the velocity of the solid relative to the wave head is locally sonic, the system of

equations (E. 15) is singular. It is seen by examination of Equations (E.21-22) that the

equations are also singular at the complete reaction state because the particle radius r

appears in the denominator of the expressions for E and F.

The two-equation model can be derived form Equations (E.16-22). To derive the two-

equation model, one must consider the zero-compaction, zero-heat transfer limit,
corresponding to It9 -4 0, 7c3 - 0. In this limit, Equations (E.20, 22) hold that D = F = 0.3 Then if Equation (E.16) is multiplied by solid velocity and added to the product of solid

density and Equation (E. 18), the following homogeneous equation is obtained.

v 2 p 2 dv 2- 0(E.25)
I d4 d  2  d42

3 This equation can be integrated to form the algebraic relation

3 p2v2 = - 1 (E.26)

I
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I In applying the initial conditions when integrating this equation, it is unnecessary to

specify whether the initial state is shocked or unshocked. This arises because Equation5 (E.26) is equivalent to the shock relation (5.29) when it is considered that porosity does not

jump through the shock wave.

To determine a second algebraic relation, Equation (E.26) must first be used to

eliminate solid velocity in favor of solid density in all remaining equations. Then if

Equation (E. 19) is multiplied by the factor

l17II
p2

and added to the product of Equation (E.16) and the factor

I Ia +1I!,

the following homogeneous equation is obtained

1 dP2  P2 +ii 8 dp2
I- - 717 P = 0 (E.27)
P r d4 PX17+1 d4

I p 2  p 2

3 This equation may be integrated to form an algebraic relation between solid pressure

and density. The constant of integration for this expression is dependent on whether the

I initial state is shocked or unshocked.

I P2= K p2 
" 7- 8  (E.28)

2 - 14( 17- 1)2[( 17 - 1) (1+ 2714 C17 ) C shocked solid

w ith K = X X17 +  1I. 17 +  nsh oc k ed so lid

I /g21 +ir 8  unshocked solid

I
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When Equations (E.26) and (E.28) are used to eliminate solid velocity and pressure

from Equations (E. 16) and (E. 17), the two-equation model is found.

dp ic2(v1-v2 )p2  - (Kpx " - t 4)p3p A4

2.... 2 21 2 8 21(E.29)
d4 dr (7c Kp 17 - 1)

I 2 1  2 P 1  (E.30)
d 1 rI

By multiplying the numerator and denominator of the right side of Equation (E.30) by

3 the factor

N17K2 -1

I the form of Equations (5.45, 46) is found.

I
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I APPENDIX F. DERIVATION OF NUMBER CONSERVATION EQUATION

I
As the number conservation is not universally used in two-phase granular detonation

theory, a derivation for the number conservation equation (3.7) along with Equation (3.16)
is given here.

The volume fraction of particles 4 is defined as the ratio of the volume of particles to

the total volume.

I Volume Particles

2 Total Volume (F.1)I
If it is assumed that the particles are spheres of radius r, then the volume of particles is

equal to the product of the number of particles and the volume of a single particle. Based

on this assumption Equation (F.1) is written asI 4

(Number of Particles) I t r3

4)2 =  Total Volume (F.2)

3 If the number density n is defined as the number of particles per total volume, then

Equation (F.2) can be used to determine an expression for number density as a function of

particle radius and solid volume fraction.

n -- (F.3)
4 i r3U

By performing a simple control volume analysis, an expression for the conservation of3 number density can be derived. The expression is

a+ a 2 = 0 (F.4)

I
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This equation could be modified to describe the agglomeration or splitting of particles by
use replacing the zero on the right side of Equation (F.4) with a functional relation suitable

to describe such a phenomenon.
Substituting the number density definition (F.3) into the number conservation equation

(F.4), an equation identical to Equation (3.7) is derived.

rfA2 a+ U 2/r3 = 0 (F.5)I
Using the Galilean transformation -x - Dt, v2 = u2 - D where D is the steady wave

speed allows Equation (F.5) to be written in steady form.

d (v 202/r 3) = 0 (F.6)

Using the initial conditions from Chapter 3, Equation (F.6) may be integrated to
provide the following algebraic expression for particle radius as a function of particle

velocity and volume fraction

r 02 0

3To obtain an explicit equation for the particle radius evolution, Equation (F.5) can be

expanded.

II L t + -( -TL~ + u2~ = 0 (F.8)

The solid mass equation (3.2) can be used to write an expression for the derivative of
solid volume fraction.I

I
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. x 2 2  - p.. + u .9Z - ( )20 aP1 (F.9)

P2

I By using Equation (F.9) to eliminate the volume fraction derivative in Equation (F.8),
an expression identical to Equation (3.16) for the evolution of particle radius is obtained.I

r r +P u x _ rP - + ua (F.10)
2 I 3

1 This equation states that the particle radius changes in response to combustion and
compressibility effects. Equation (F.10) is inconsistent with the model equation used

formerly by Krier and co-workers to determine the particle radius. As stated in Ref. 1, the
particle burn law used in these works is (correcting for a sign error in the paper)

drm
d. = -aP (F.11)

In this equation the definition of the derivative d/dt is unclear as to whether or not
convective terms are included. Regardless of this question, it is clear that Equation (F. 11)
does not account for compressibility effects in the particles. It must be concluded that since

Equation (F.11) is inconsistent with Equation (F.10) that the model of Ref. 1 does not
conserve number, thus, the physical motivation of Equation (F. 11) is unclear.U
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